Сущность ультразвукового метода контроля качества сварных швов. Методика ультразвукового контроля сварных швов. Что являет собой УЗК сварочных стыков

Сварные соединения и швы требуют постоянного контроля качества, вне зависимости от давности установки. Проверка производится с помощью различных методов, наиболее точным является ультразвуковой контроль. Методика проверки сварных швов используется с начала прошлого столетия, пользуется популярностью ввиду точных показателей, выявления малейших недочетов. Как показывает практика, внутри сварочного шва могут быть скрытые дефекты, которые напрямую влияют на качество соединения, ультразвуковая дефектоскопия помогает выявить мельчайшие детали, недостатки.

Ультразвуковой метод и его технология

Технология ультразвукового контроля используется производством, промышленностью с момента развития радиотехнического процесса. Эффект и устройство технологии в том, что ультразвуковые волны акустического типа не меняют прямолинейную траекторию движения при прохождении однородной среды. Ультразвуковой метод используется также при проверке металлов и соединений, имеющих различную структуру. Такие случаи подразумевают, что происходит частичный процесс отражения волн, зависит от химических свойств металлов, чем больше сопротивление звуковых волн, тем сильнее воздействует эффект отражения.

Дефектоскопия или ультразвуковой контроль не разрушают соединения по структуре. Технология проведения ультразвуковой диагностики включает поиск структур, не отвечающих по химическим или физическим свойствам показателям, любые отклонения считаются дефектом. Показания колебаний рассчитываются по формуле L=c/f, где L описывает длину волны, Скорость перемещения ультразвуковых колебаний, f частоту колебаний. Определение дефекта происходит по амплитуде отраженной волны, тем самым возможно вычислить размер недочета.

Сварные соединения подразумевают работу с наличием газовых ванн, испарения которых не всегда успевают удалиться в окружающую среду. Ультразвуковой метод контроля позволяет выявить газообразные вещества в сварных соединениях, за счет сопротивления волн. Газообразная среда веществ обладает сопротивлением в пять раз меньшим по отношению к кристаллической решетке металлических материалов. Ультразвуковой контроль металла позволяет вывить среды за счет отражения колебаний.

Получение и свойства ультразвуковых колебаний

Акустические волны или ультразвуковые колебания выдаются при частоте, превышающей параметр 20 кГц. Механические колебания, способные рассеиваться при упругих, твердых средах, диапазон, как правило, составляет 0,5 – 10 МГц. Распространение волн структурой металла происходит акустическими ультразвуковыми волнами, воздействующими на равновесие центральной точки.

Существуют несколько способов ультразвукового неразрушающего контроля, наиболее распространенный из них пьезоэлектрический. Заряженная электричеством с определенной частотой пластинка вибрирует, механические колебания передаются в окружающую среду при состоянии волны. Генераторы электро волны используется вне зависимости от предназначения, размеров оборудования, могут выдавать различные параметры.

Скорость обращения ультразвукового контроля напрямую зависит от свойств, типа физической среды. Скорость распространения продольной волны вдвое выше, чем поперечной. Прием информации происходит пластиной из пьезоэлектрического элемента, работающей на преобразование энергии в импульсную энергию. Процессом применяются короткие переменные импульсы различного типа колебаний, что позволяет определить глубину, свойства дефекта.

На границе разделения двух сред, результатом падения продольной акустической волны при наклонном типе является появление отражения и трансформации ультразвуковых волн. Существуют основные типы контроля:

  • отраженные;
  • преломлённые;
  • сдвиговые поперечные;
  • продольные волны.

Процесс происходит путем разделения падающей под углом волны на поперечную и продольную, распространение которых производится непосредственно материалом.

Существует определенное значение угла подачи, направления ультразвуковых колебаний, при нарушении которого, ультразвуковой контроль не будет распространяться вглубь металла, а останется на его поверхности. Данный метод используется при определенных параметрах и задачах, волна двигается только по поверхности материала, что позволяет контролировать качество сварного шва.

Виды ультразвукового контроля

Операция контроля сварного шва позволяет определить расстояние до дефекта по временной шкале распространения отражения, размер амплитуды, ширины акустической волны.

В настоящем времени существует несколько способов, которыми проводится ультразвуковой контроль, основанием служит ГОСТ-23829, основные отличия происходят в оценке, регистрации данных:

  1. Диагностика теневым методом производится с использованием двух инструментов, установленных по разные стороны материала. Предназначение первого – излучать волны, второго принимать. Устанавливаются по перпендикулярной плоскости исследуемого сварного соединения. Процесс происходит путем излучения, контроля приема отражений, при тех случаях, когда возникает глухая зона, это означает, что результатом соединении имеется участок другой среды, шов принимается дефектным участком.
  2. Эхо — импульсный метод применяет один дефектоскоп, параметрами которого обусловлено направление, прем ультразвукового контроля. Технология отражения происходит путем отсвечивания отражения от участков с дефектами. Когда допускается прохождение волн напрямую, участок считается нормальным, если происходит отражение, возврат волны к дефектоскопу, это место помечается как дефект.
  3. В эхо — зеркальном методе используется такой же принцип работы, что и способом, приведенным выше. Отличительной особенностью является применение отражателя. Устанавливается оборудование под прямым углом, волны посылаются к материалу, в случае наличия повреждений отражаются на приемник. Данный тип проверки зачастую используют при поиске трещин, других вертикальных дефектов.
  4. Симбиоз зеркального и теневого метода контроля использует два прибора. Оба устанавливаются с одной стороны объекта, посылаются косые волны. Отражение происходит от сетки основного металла, в случае выявления нестандартных зон, место маркируется как дефект.
  5. В основе дельта метода ультразвукового контроля происходит излучение дефектом направленных отражений внутрь сварного шва. Волны разделяются на подкатегории зеркальных, трансформируемых, продольных и поперечных, приемником удается поймать не все типа волн. Метод не славится популярностью, т.к. требует настройки оборудования, продолжительной расшифровки результатов. Также при контроле дельта методом предъявляются жесткие требования по качеству очистки сварного соединения.

Наиболее популярными являются теневой и эхо – импульсный методы, остальные реже ввиду требуемой настройки оборудования и неудобного использования инструментов.

Как проводится ультразвуковая дефектоскопия

Процесс проверки ультразвуковым оборудованием относится практически ко всем типам металлов, чугуне, меди, стали и других легированных соединениях.

Существует определенный стандарт выполнения проверочных работ, которому необходимо придерживаться:

  • зачищается ржавчина, лакокрасочное покрытие со шва на расстоянии 5-7 см;
  • для получения достоверных результатов при ультразвуковом контроле сварных соединений, поверхности необходимо обработать турбинным, трансформаторным, либо машинным маслом;
  • контролер или прибор подстраивается под определенные параметры проверки;
  • стандартные настройки применяются при толщине сварного шва не более 2 см;
  • более толстые детали требуют применения АРД диаграмм;
  • проверка качества шва выполняется с помощью AVG или DSG параметров;
  • излучатель аппарата ультразвукового контроля перемещается вдоль шва зигзагом, проворачивается вокруг своей оси на небольшой угол;
  • искатель проводится по материалу до выявления максимально четкого, устойчивого сигнала, после чего разворачивается для поиска максимальной амплитуды;
  • контроль, проверку ультразвуковой дефектоскопии сварных швов производят согласно ГОСТу;
  • отклонения, дефекты прописываются в регистрационную таблицу.

Сварочные швы основываются на контроле, достаточным проверкой УЗД. При соответствующей квалификации оператора, правильно настроенном оборудовании, возможно получить исчерпывающий ответ о наличии дефектов. При тех случаях, когда применяются более подробные исследования сварных швов, используют гамма — дефектоскопию или рентгенодефектоскопию. Рамки применения теневого метода ультразвуковой дефектоскопии и других способов существуют, основные дефекты, которые возможно выявить с помощью УЗД:

  • расслоения наплавленного метала, различные поры;
  • трещины, неровности шва, а также не проваренные участки;
  • не сплавления, дефекты свище образного происхождения;
  • поврежденные окислами и коррозией участки, провисание металла;
  • несоответствующий химический состав соединения, поврежденный геометрически размер.

Ультразвуковой диагностике подвержены различные типы швов, плоские, продольные, кольцевые, сварные трубы и стыки, а также тавровые соединения. Методика проверки швов применяется не только крупными производственными предприятиями, а также на строительных площадках, при возведении помещений. Чаще всего УЗД используется:

  • в определении степени износа труб в магистралях, сварных соединений;
  • диагностика агрегатов, материалов в аналитических целях;
  • машиностроение, нефтегазовая, тепловая, химическая и атомная промышленности требуют использование технологии при обеспечении безопасности эксплуатации будущего изделия;
  • в соединениях сварного типа с крупнозернистой структурой, сложной геометрией;
  • установка и соединение изделий, подверженных крупным физическим, температурным нагрузкам, потребует проверки ультразвуковым контролем.

К работе с дефектоскопом допускаются лица, имеющие удостоверение, ознакомленные с правилами техники безопасности. Сварные стыки могут находиться в замкнутых пространствах, на высоте, труднодоступных местах, перед работой оператор проходит дополнительный инструктаж, работа контролируется отделом охраны труда. Работа производится с заземленным аппаратом, сечением провода не менее 2.5 мм. Категорически запрещается использовать оборудование вблизи сварочных работ в отсутствие специальной защиты.

Параметры оценки результатов

Аппарат настраивается путем определения наименьшего размера дефекта на эталонной детали. В роли эталонов выступают расположенные перпендикулярно направлению прозвучивания отверстия плоскодонного типа. Используются эталонные детали также с боковыми прорезями, зарубками.

Минимальным расстоянием между дефектами обуславливается разрешающая способность для эхо – метода, это делается, чтобы определить несколько различных дефектов.

Оценка качества сварных соединений при ультразвуковом контроле происходит по следующим параметрам:

  • условная протяженность;
  • ширина, высота дефекта, а также его форма;
  • амплитуда звуковой волны.

Длинна сварного дефекта определяется расстоянием перемещения излучателя по отношению к зафиксированному показанию сигналов с прибора. Способ определяется также для определения ширины дефекта. По разнице времени излученной, отраженной форме волны от дефекта определяется высота дефекта.

Определение точного значения дефекта при ультразвуковой проверке практически невозможно. Именно поэтому, за основу берется площадь эталонного изделия. Максимально допустимыми параметрами являются эквивалентные величины, которые сопоставляются с эталоном. Стоит учитывать, что вычисленная площадь, практически во всех случаях, меньше настоящего размера.

Результаты дефектоскопии ультразвукового типа оформляются в специально отведенном журнале, согласно ГОСТ-14782. При регистрации проверки в обязательном порядке проставляются:

  • индексы и наименование типа сварного стыка, длина подверженного контролю шва;
  • техническое задание, условие, при которых производилась проверка;
  • тип, наименование устройства;
  • частота колебаний в ГЦ;
  • условная, предельная чувствительность, углы ввода в металл, а также тип искателя;
  • результаты, дата проверки, а также фамилия оператора.

К описанию характеристик в журналах при проверке применяются сокращения. Прописная буква А указывает на то, что дефект и его протяженность не переступает технические условия. Буквы Б, В характеризуют протяженность дефекта по нарастающей. Цифрами следом обозначается количество дефектов, их размеры, глубину.

Определение формы дефекта происходит за счёт специальной методики, основой данных является эхо-сигнал, отображаемый дефектоскопом. Точность показаний определяется квалификацией оператора, его внимательностью, тщательность проведения. Измеряемые показатели должны быть в соответствии с инструкцией.

Достоинства и недостатки ультразвукового контроля труб

Ультразвуковым контролем возможно определить несоответствия во всех видах соединений, пайке, склейке, сварки и т.к. Процедура позволяет выявить большое количество недочетов:

  • поры, воздушные пустоты;
  • околошовные трещины, шлаковые отложения;
  • неоднородные химические вкрапления;
  • расслоения слоями наплавленного металла.

Основными преимуществами проведения неразрушимой акустической дефектоскопии являются:

  • возможность проверки соединений как разнородных, так и однородных металлов, материалов;
  • оценка качества соединения материалов, состоящих из неметаллов;
  • отсутствие разрушения, повреждения поверхности шва, после проверки обследуемый участок необходимо только закрасить;
  • отсутствие опасных воздействий на организм человека в сравнении с радио или рентген дефектоскопией.
  • Низкая себестоимость, высокая мобильность позволяют проводить контроль швов практически при любых полевых условиях.

Проведения работ со сложным оборудованием требует обученного, опытного персонала. Ультразвуковой контроль швов не исключение, а также требуется подготовка сварного шва по определенным показателям:

  • Контроль за создание шероховатости не ниже 5 класса, направление полос должно быть перпендикулярно направлению шва;
  • Исключение появления воздушного зазора путем нанесения масел или воды, в случае проверти вертикальной поверхности применяется густые массы и клейстеры.

Каждый из способов проверки имеет недостатки, проверка КЗД металлов не исключение. К основным отрицательным сторонам можно отнести:

  • При диагностике круглых изделий радиусом менее 10 см, необходимо применять специальные преобразователи пьезоэлектрического типа, радиус кривизны подошвы которых отличается от объекта на 10 процентов в большую или меньшую сторону;
  • Крупнозернистые структуры толщиной более 60 мм сложно диагностировать, в связи с затуханием отражения, рассеиванием колебаний при контроле. Такие материалы обычно состоят из аустенита или чугуна.
  • Малые изделия, детали со сложными конструктивными особенностями не возможно подвергнуть проверке УЗД;
  • Сложный процесс оценки, проверки материалов из неоднородных сталей;
  • Расположение в структуре шва дефекта на различной глубине, не дает возможности точно определить диаметр, высоту неровности.

Для проверки понадобится дефектоскопы и преобразователи, набор эталонов, образцов, предназначенных для калибровки и настройки оборудования. Определение расположения, места дефектов производится с помощью линейки координатного типа, вспомогательные приспособления понадобятся для зачистки, смазки проверяемого шва.

Проверенный сварной шов гарантирует надежность, прочность конструкции при эксплуатации. Существуют определенные нормативы, по которым изделие вводится в эксплуатацию или дорабатывается дальше.

В особенности проверка применяется в тяжелых условиях использования приспособлений.

Метод ультразвуковой дефектоскопии сварных швов применяется с 1930 года. С тех пор разработаны различные способы эхолокации. Они выявляют нарушение целостности диффузного слоя, соответствие наплавки основному металлу по химическому составу, выявляются шлаковые включения, оксидные примеси. Процедура УЗД (ультразвуковой диагностики) по точности результатов сопоставима с рентгеном, радиолокацией. Прибором выявляют самые мелкие дефекты, снижающие прочность соединений.

Среди неразрушающих методов контроля швов ультразвуковой стал самым доступным и эффективным, поставлен на поток. Результаты проверки работы сварщика заносятся в специальный журнал. Область применения ультразвукового контроля сварных соединений ограничена только геометрическими параметрами свариваемых деталей. Диагностируют швы трубопроводов, сосудов высокого давления, металлоконструкций, испытывающих большую нагрузку.

Физическая основа метода ультразвукового контроля сварных швов основана на способности ультразвука отражаться от границы раздела сред. Ультразвук – упругие механические колебания, получаемые различными методами. Они находятся за пределами слышимости. Вредного воздействия на уши оператора-контролера излучатели не оказывают.

Ультразвуковая диагностика проводится в диапазоне от 20 кГц до 500 МГц. В однородной среде направленные волны распространяются с одинаковой скоростью. На фазовом переходе отражаются или преломляются подобно световому лучу. Скорость продольной волны во всех твердых средах почти в два раза превышает скорость поперечной.

Чувствительность у приборов разная, зависит от конструктивных особенностей. Но по сути волны способны отражаться от дефектов, которые равны длине волны или превосходят ее по размеру. Ультразвуком можно определить мелкие дефекты сварных соединений: несплошности, раковины, включения шлака или нерастворимые соединения, крупные зерна, повышающие хрупкость металла.

Преимущества и недостатки ультразвуковой дефектоскопии

Сначала о достоинствах:

  • Это неразрушающий контроль, исследуемую часть конструкции не нужно отделять, разрезать, везти в лабораторию.
  • Ультразвуковыми дефектоскопами для контроля сварных соединений можно пользоваться в лабораторных и полевых условиях.
  • Методы применяются для однородных и разнородных соединений.
  • Для исследования шва не требуется много времени, результат получают на месте.
  • Приборы безопасны для человека, не оказывают вредного воздействия.
  • Достоверность результатов очень высокая, диагностируются многие виды дефектов.

Недостатки связаны с необходимостью подготовки специалистов, ограничениями. Ультразвук затухает в крупнозернистых металлах. Необходимо использовать преобразователи с определенным радиусом кривизны подошвы.

Виды УЗК сварочных швов

Стыки прозвучивают по различной методике:

  • прямым лучом;
  • однократно отраженным;
  • двукратно отраженным;
  • многократно отраженным.

Направление луча в ультразвуковом методе контроля сварных соединений подбирают по нормали, на которой дефекты особенно опасны.

Основные способы локации:

  1. Эхо-импульсная УЗД. Прибор настроен на излучение и прием волны. Если аудиволна не зафиксирована датчиком, все в порядке, в шве дефекты не обнаружены. Если зафиксировано отражение, есть раздел сред.
  2. Эхо-зеркальный метод предусматривает применение датчика, генерирующего волну, и улавливающего приемника. Приборы устанавливают под углом к оси шва. Приемник ловит отраженные волны. По результатам диагностируют трещины в сварном соединении.
  3. Теневая диагностика подразумевает прохождение ультраволн по всей площади шва, приемник устанавливается за сварным соединением. Если звук отражается, возвращается к излучателю, приемник фиксирует теневой участок.
  4. Зеркально-теневая дефектоскопия – сочетание зеркального и теневого исследования. Комплект датчиков регистрирует отраженные звуковые колебания. Чистая волна — шов сделан без нарушений. Наличие глухой зоны – признак несплошностей.
  5. Дельта-метод основан на воздействии направленным лучом. Дефекты определяются по отражению ультразвука, изменению траектории. Для точных результатов требуется деликатная настройка диагностического оборудования.

На практике чаще используют первый и третий методы. Неразрушающий контроль с использованием ультразвука выявляет брак, провоцирующий разгерметизацию сварных изделий. Считается эффективным способом профилактики аварийных ситуаций.

Область и возможности применения методики УЗК

Проверка проводится на соединениях цветных металлов, чугуне, углеродистой и легированной стали. С помощью диагностики УЗК сварных швов выявляют:

  • пористость, связанную с насыщением расплава атмосферными газами;
  • включения ржавчины;
  • непровары;
  • участки с нарушением геометрии детали;
  • трещины в зоне термовлияния;
  • несплошности различной природы;
  • инородные включения в расплаве;
  • структурные расслоения;
  • неоднородность наплавленного слоя;
  • складки наплавочного материала;
  • свищи (сквозные дефекты);
  • провисание диффузионного слоя за пределами стыка.

УЗК-контролю сварных соединений подвергают различные конструкционные элементы:

  • тавровые швы;
  • трубные и фланцевые кольцевые соединения;
  • стыки любой конфигурации, включая сложные формы;
  • продольные и поперечные швы, подвергающиеся разнонаправленным нагрузкам или испытывающим высокое давление.

В инструкциях по ультразвуковому контролю сварных соединений указаны ограничения диагностики, связанные со способностью ультразвука рассеиваться при прохождении через металлическую решетку.

Геометрический диапазон контроля:

  • толщина проверяемых заготовок: mах 0,5–0,8 м, min 8–10 мм;
  • расстояние до контролируемого шва или углубление: mах 10 м; min 3 мм.

Методика применяется в строительной отрасли, автомобильной промышленности, на предприятиях, где есть сосуды высокого давления, котлы, технологические трубопроводы.

Устройство и принцип работы ультразвукового дефектоскопа

У всех приборов есть генератор, излучатель и приемник ультразвука, усилитель сигнала. Устройства различаются по типу генераторов. Чаще используются пьезоэлементы. Ультразвуковой датчик посылает сигналы импульсно, с паузами до пяти микросекунд. Длительность настраивают в зависимости от плотности металла, структурных особенностей изыскиваемых дефектов. По отражению делается качественная и количественная оценка: выявляется дефект, глубина его образования, размеры.

Излучатель находится в подвижном щупе, он двигается вдоль и поперек исследуемых швов.

Точность диагностики зависит от чувствительности приемника, улавливающего прошедшую или отраженную волну. На границе сред волна меняет направление, оператор должен это учитывать. Проще определяются теневые участки – места, где волна отражается. Звуковой сигнал преобразуется в электрический, картинка выводится на осциллограф. Отраженная волна показывает пик, постоянная – прямую линию.

Проверка сварных швов ультразвуком

Технология проверки регламентирована ГОСТ Р 55724-2013. Операторам-контролерам выдают удостоверения. Перед проверкой им проводят инструктаж по ТБ. Проверять приходится соединения, расположенные в труднодоступных местах. Прибор обязательно заземляется. Оценка результатов проводится по нескольким критериям. В журнал ультразвукового контроля качества заносятся следующие данные:

  • протяженность контролируемого сварного шва;
  • описание дефекта (ширина, высота, форма);
  • диапазон пропускаемой волны.

Для диагностики проводится зачистка исследуемой области (валик плюс область термовлияния). Для лучшей проходимости ультразвука на поверхности создают маслянистую пленку. Прибор настраивают по стандарту. Поиск отраженного или пропускаемого сигнала проходит на максимальной амплитуде. В зависимости от важности соединения контроль проводится за один или два прохода.


Для обеспечения безопасных условий эксплуатации различных объектов со сварными соединениями все швы необходимо подвергать регулярной проверке. Вне зависимости от их новизны или давнего срока эксплуатации металлические соединения проверяются различными методами дефектоскопии. Наиболее действенным методом является УЗД – ультразвуковая диагностика, которая превосходит по точности полученных результатов рентгенодефектоскопию, гамма-дефектоскопию, радио-дефектоскопию и др.

Это далеко не новый (впервые УЗК проведен в 1930 году) метод, но является очень популярным и используется практически повсеместно. Это обусловлено тем, что наличие даже небольших приводит к неизбежной утрате физических свойств, таких как прочность, а со временем к разрушению соединения и непригодности всей конструкции.


Теория акустической технологии

Ультразвуковая волна при УЗД не воспринимается ухом человека, но она является основой для многих диагностических методов. Не только дефектоскопия, но и другие диагностические отрасли используют различные методики на основе проникновения и отражения ультразвуковых волн. Особенно они важны для тех отраслей, в которых основным является требование о недопустимости нанесения вреда исследуемому объекту в процессе диагностики (например, в диагностической медицине). Таким образом, ультразвуковой метод контроля сварных швов относиться к неразрушающим методам контроля качества и выявления места локализации тех или иных дефектов (ГОСТ 14782-86).

Качество проведения УЗК зависит от многих факторов, таких как чувствительность приборов, настройка и калибровка , выбор более подходящего метода проведения диагностики, от опыта оператора и других. Контроль швов на пригодность (ГОСТ 14782-86) и допуск объекта к эксплуатации не возможен без определения качества всех видов соединений и устранения даже мельчайшего дефекта.

Определение

Ультразвуковой контроль сварных швов – это неразрушающий целостности сварочных соединений метод контроля и поиска скрытых и внутренних механических дефектов не допустимой величины и химических отклонений от заданной нормы. Методом ультразвуковой дефектоскопии (УЗД) проводится диагностика разных сварных соединений. УЗК является действенным при выявлении воздушных пустот, химически не однородного состава (шлаковые вложения в ) и выявления присутствия не металлических элементов.

Принцип работы

Ультразвуковая технология испытания основана на способности высокочастотных колебаний (около 20 000 Гц) проникать в металл и отражаться от поверхности царапин, пустот и других неровностей. Искусственно созданная, направленная диагностическая волна проникает в проверяемое соединение и в случае обнаружения дефекта отклоняется от своего нормального распространения. Оператор УЗД видит это отклонение на экранах приборов и по определенным показаниям данных может дать характеристику выявленному дефекту. Например:

  • расстояние до дефекта – по времени распространения ультразвуковой волны в материале;
  • относительный размер дефекта – по амплитуде отраженного импульса.

На сегодняшний день в промышленности применяют пять основных методов проведения УЗК (ГОСТ 23829 – 79), которые отличаются между собой только способом регистрации и оценки данных:

  • Теневой метод. Заключается в контроле уменьшения амплитуды ультразвуковых колебаний прошедшего и отраженного импульсов.
  • Зеркально-теневой метод. Обнаруживает дефекты швов по коэффициенту затухания отраженного колебания.
  • Эхо-зеркальный метод или “Тандем” . Заключается в использовании двух аппаратов, которые перекликаются в работе и с разных сторон подходят к дефекту.
  • Дельта-метод. Основывается на контроле ультразвуковой энергии, переизлученной от дефекта.
  • Эхо-метод. Основан на регистрации сигнала отраженного от дефекта.

Откуда колебания волны?

Проводим контроль

Практически все приборы для диагностики методом ультразвуковых волн устроены по схожему принципу. Основным рабочим элементом является пластина пьезодатчика из кварца или титанита бария. Сам пьезодатчик прибора для УЗД расположен в призматической искательной головке (в щупе). Щуп располагают вдоль швов и медленно перемещают, сообщая возвратно-поступательное движение. В это время к пластине подводится высокочастотный ток (0,8-2,5 Мгц), вследствие чего она начинает излучать пучки ультразвуковых колебаний перпендикулярно своей длине.

Отраженные волны воспринимаются такой же пластиной (другим принимающим щупом), которая преобразует их в переменный электрический ток и он сразу отклоняет волну на экране осциллографа (возникает промежуточный пик). При УЗК датчик посылает переменные короткие импульсы упругих колебаний разной длительности (настраиваемая величина, мкс) разделяя их более продолжительными паузами (1-5 мкс). Это позволяет определить и наличие дефекта, и глубину его залегания.

Процедура проведения дефектоскопии

  1. Удаляется краска и со сварочных швов и на расстоянии 50 – 70 мм с двух сторон.
  2. Для получения более точного результата УЗД требуется хорошее прохождение ультразвуковых колебаний. Поэтому поверхность металла около шва и сам шов обрабатываются трансформаторным, турбинным, машинным маслом или солидолом, глицерином.
  3. Прибор предварительно настраивается по определенному стандарту, который рассчитан на решения конкретной задачи УЗД. Контроль:
  4. толщины до 20 мм – стандартные настройки (зарубки);
  5. свыше 20 мм – настраиваются АРД-диаграммы;
  6. качества соединения – настраиваются AVG или DGS-диаграммы.
  7. Искатель перемещают зигзагообразно вдоль шва и при этом стараются повернуть вокруг оси на 10-15 0 .
  8. При появлении устойчивого сигнала на экране прибора в зоне проведения УЗК, искатель максимально разворачивают. Необходимо проводить поиск до появления на экране сигнала с максимальной амплитудой.
  9. Следует уточнить: не вызвано ли наличие подобного колебания отражением волны от швов, что часто бывает при УЗД.
  10. Если нет, то фиксируется дефект и записываются координаты.
  11. Контроль сварных швов проводится согласно ГОСТу за один или два прохода.
  12. Тавровые швы (швы под 90 0) проверяются эхо-методом.
  13. Все результаты проверки дефектоскопист заносит в таблицу данных, по которой можно будет легко повторно обнаружить дефект и устранить его.

Иногда для определения более точного характера дефекта характеристики от УЗД не хватает и требуется применить более развернутые исследования, воспользовавшись рентгенодефектоскопией или гамма-дефектоскопией.

Рамки применения данной методики при выявлении дефектов

Контроль сварочных швов, основанный на УЗД довольно четкий. И при правильно проведенной методике испытания шва дает полностью исчерпывающий ответ по поводу имеющегося дефекта. Но рамки применения УЗК так же имеет.

С помощью проведения УЗК возможно выявить следующие дефекты:

  • Трещины в околошовной зоне;
  • поры;
  • непровары шва;
  • расслоения наплавленного металла;
  • несплошности и несплавления шва;
  • дефекты свищеобразного характера;
  • провисание металла в нижней зоне сварного шва;
  • зоны, пораженные коррозией,
  • участки с несоответствием химического состава,
  • участки с искажением геометрического размера.

Подобную УЗД возможно осуществить в следующих металлах:

  • медь;
  • аустенитные стали;
  • и в металлах, которые плохо проводят ультразвук.

УЗД проводится в геометрических рамках:

  • На максимальной глубине залегания шва – до 10 метров.
  • На минимальной глубине (толщина металла) – от 3 до 4 мм.
  • Минимальная толщина шва (в зависимости от прибора) – от 8 до 10 мм.
  • Максимальная толщина металла – от 500 до 800 мм.

Проверки подвергаются следующие виды швов:

  • плоские швы;
  • продольные швы;
  • кольцевые швы;
  • сварные стыки;
  • тавровые соединения;
  • сварные .

Основные области использования данной методики

Не только в промышленных отраслях используют ультразвуковой метод контроля целостности швов. Данную услугу – УЗД заказывают и в частном порядке при строительстве или реконструкции домов.

УЗК чаще всего применяется:

  • в области аналитической диагностики узлов и агрегатов;
  • когда необходимо определить износ труб в магистральных трубопроводах;
  • в тепловой и атомной энергетике;
  • в машиностроении, в нефтегазовой и химической промышленности;
  • в сварных соединениях изделий со сложной геометрией;
  • в сварных соединениях металлов с крупнозернистой структурой;
  • при установке ( соединений) котлов и узлов оборудования, которое поддается влиянию высоких температур и давления или влиянию различных агрессивных сред;
  • в лабораторных и полевых условиях.

Испытания в полевых условиях

К преимуществам ультразвукового контроля качества металлов и сварных швов относятся:

  1. Высокая точность и скорость исследования, а также его низкая стоимость.
  2. Безопасность для человека (в отличие, к примеру, от рентгеновской дефектоскопии).
  3. Возможность проведения выездной диагностики (благодаря наличию портативных ультразвуковых дефектоскопов).
  4. Во время проведения УЗК не требуется выведения контролируемой детали или всего объекта из эксплуатации.
  5. При проведении УЗД проверяемый объект не повреждается.

К основным недостаткам УЗК можно отнести:

  1. Ограниченность полученной информации о дефекте;
  2. Некоторые трудности при работе с металлами с крупнозернистой структурой, которые возникают из-за сильного рассеяния и затухания волн;
  3. Необходимость проведения предварительной подготовки поверхности шва.

Методика ультразвукового контроля сварных швов во многом обусловливается типом и размерами соединений. Однако при этом существует ряд общих положений ло прозвучиванию сварных швов, определению размеров и конфигурации дефектов, а также по оценке качества сварных соединении и сочетанию метода ультразвуковой дефектоскопии с другими методами контроля.

Прозвучивание металла шва

При контроле качества сварных соединений необходимо обеспечивать тщательное прозвучивание металла шва. Ультразвуковые колебания вводятся в металл шва через основной металл,с помощью наклонных искателей. Различают способы прозвучивания прямым, однократно, двукратно и многократно отраженными лучами (рис. 14).

Тип искателя, способ прозвучивания и метод перемещения искателя определяются типом и размерами сварного соединения, а также характером встречаемых в нем дефектов. Угол ввода колебаний выбирают таким, чтобы расстояние от искателя до шва было как можно меньшим, а направление луча - возможно близким к нормали к такому сечению, в котором площадь ожидаемых дефектов максимальна. Поэтому двукратно и многократно отраженным лучом контролируют в том случае, если размеры валика усиления шва не позволяют прозвучивать шов прямым или однократно отра-.женным лучом при оптимальном угле ввода луча.

Рис. 14. Способы прозвучивания металла шва лучом: а - прямым; б - однократно отраженным; в - двукратно отраженным; г - многократно отраженным.

Особое внимание должно быть уделено тем дефектам, отражение от которых можно получить лишь тогда, когда их поверхность перпендикулярна акустической оси искателя.

Контроль сварных швов, как правило, осуществляют эхо-методом с включением искателя по совмещенной схеме. Раздельную и раздельно-совмещенную схемы включения искателей применяют, если контроль по совмещенной схеме не обеспечивает достаточную надежность и достоверность.

Рис. 15. Выявление дефекта при различных углах ввода луча α 1: 1 и 2 - поверхности соединения; 3 и 4 - стороны соединения

Надежность прозвучивания во многом определяется качеством акустического контакта между изделием и искателем. С целью обеспечения акустического контакта производят соответствующую подготовку поверхности металла и смачивание ее слоем контактирующей среды. В случае применения призматических искателей подготовка поверхности сводится лишь к удалению выпуклостей и брызг металла, отслаивающейся ржавчины и грязи.

Во избежание быстрого износа призмы в процессе прозвучивания нажим на искатель должен быть минимальным, лишь обеспечивающим плотное прилегание призмы к поверхности металла.

Эффективным средством снижения интенсивности износа призм является применение полиэтиленовых прокладок, через которые вводятся ультразвуковые колебания в металл.

Качество акустического контакта зависит также от формы рабочей поверхности искателя и конфигурации изделия. При прозвучивании поперечных сварных соединений металла цилиндрической формы с радиусом кривизны свыше 100 мм применяют искатели с плоской поверхностью. При малых радиусах цилиндрических поверхностей для улучшения акустического контакта рабочую поверхность искателя притирают к цилиндрической поверхности изделия. Если прозвучивание шва производят в направлении, перпендикулярном к образующей цилиндрической поверхности, то искатели с плоской поверхностью можно использовать лишь при радиусе кривизны более 300 мм. Продольные швы в конструкциях цилиндрической формы с радиусом кривизны менее 300 мм ультразвуком не контролируют, так как достичь при этом удовлетворительного контакта даже путем притирки искателей не удается.

Прозвучивание всего объема наплавленного металла, как правило, обеспечивается за счет продольно-поперечного сканирования искателем (рис. 16). Шаг поперечного сканирования должен быть меньше размеров сечении ультразвукового пучка на уровне 0,8 диаграммы направленности и практически составляет 2-4 мм. Для повышения надежности контроля в процессе сканирования осуществляют непрерывные вращательные движения искателя на угол |φ|~10-15° от положения, при котором ось луча нормальна к продольной оси шва (рис. 16).

Рис. 16. Схемы сканирования шва: 1 - продольное; 2 - поперечное; 3 - вращательное, 4 - поворотное.

Для выявления ориентированных различным образом дефектов сварной шов при возможности прозвучивают с двух сторон. Прозвучивание соединений вначале осуществляют при поисковой чувствительности, превышающей оптимальную. На вход приемного тракта дефектоскопа, кроме полезных эхо-сигналов, могут поступать помехи. Если частота ультразвука выбрана верно, то, как правило, главным видом помех являются ложные эхо-сигналы от подрезов допустимых размеров и от неровностей на поверхности валика усиления.

Сигналы помех в отдельности ничем не отличаются от полезных сигналов, отраженных от дефектов. Их появление не может быть предугадано и в этом отношении они являются случайными. Однако при контроле соединений заданного типоразмера можно предопределить вероятные области временного сдвига помех по отношению к зондирующему импульсу.

Стыковые сварные соединения

Контроль стыковых сварных соединений осуществляют эхо-методом по совмещенной схеме (рис. 17, а, б, в, г, д). Значительно реже применяют теневой метод (рис 17, е).

Вводить ультразвуковые колебания с помощью прямых искателей непосредственно в наплавленный металл нельзя, так как между грубой неплоской поверхностью усиления и искателем не удается создать удовлетворительный акустический контакт. Поэтому прозвучивание швов ведут с помощью призматических искателей, зигзагообразно перемещаемых в определенных пределах вдоль шва (рис. 17, а); шаг продольного перемещения составляет 2-5 мм. Для выявления дефектов, различным образом ориентированных в металле, шов следует прозвучивать с двух сторон усиления. При этом исключается также пропуск рядом расположенных дефектов, который может быть вызван интерференцией отраженных от них колебаний.

Швы толщиной более 150 мм прозвучивают прямым лучом с двух противоположных поверхностей металла (при возможности доступа к обеим поверхностям).

Проконтролировать весь объем наплавленного металла с одной поверхности не удается, так как для прозвучивания таких швов однократно отраженным лучом чувствительность дефектоскопа оказывается недостаточной.

При прозвучивании шва с одной поверхности прямым лучом (рис. 17, б) остается непроконтролированной мертвая зона, высота l min которой связана с шириной усиления b соотношением

где b - ширина усиления;

d - стрела искателя;

а - угол ввода луча.

Рис. 17. Схемы прозвучивания стыковых сварных швов

Величина мертвой зоны при контроле шва может быть легко определена по шкале глубиномера дефектоскопа или по координатной линейке. Значение мертвой зоны определяется цифрой по шп Н для d+b/2 на соответствующей шкале L.

Для обеспечения большей чувствительности и уменьшения мертвой зоны каждый шов контролируют искателями с различными углами ввода луча. Прозвучивание шва этими искателями ведут послойно, увеличивая чувсвительность и уменьшая угол ввода с увеличением глубины расположения слоя (рис. 18).

Швы толщиной 25 - 150 мм могут быть прозвучены с одной поверхности основного металла прямым и однократно отраженным лучом (рис. 1, в). При этом yгол ввода а обычно выбирают таким, чтобы ось луча в одном из положений искателя пересекла ось симметрии шва толщиной δ на глубине 0,5δ. Величина угла α определяется уравнениями:

при прозвучивании прямым лучом

при прозвучивании однократно отраженным лучом

Рис. 18. Схема контроля стыковых сварных швов толщиной более 150 мм.

Очевидно, прозвучить все сечение стыкового шва можно двумя искателями, у одного из которых угол ввода луча имеет величину, определяемую из предыдущих выражений. При этом необходимо, чтобы выполнялось условие

где
и
- углы ввода луча искателей при прозвучивании прямым и отраженным лучом соответственно.

Чем меньше толщина основного металла, тем больший угол ввода луча необходим для контроля шва, так как с уменьшением толщины δ ширина b усиления падает незначительно. При этом для прозвучивания шва прямым лучом всегда требуется больший угол ввода луча, чем для прозвучивания того же шва лучом, отраженным от противоположной поверхности основного металла. Поэтому шов может быть прозвучен одним искателем, угол ввода луча которого рассчитан по выражению (2). Удовлетворительные результаты при контроле дают искатели с углами ввода луча меньше 80°. В связи с этим искателями типовой конструкции оказывается возможным прозвучивать прямым лучом стыковые швы металла толщиной более 20 - 25 мм. Швы металла меньшей толщины могут быть прозвучены с помощью этих искателей только лучом, претерпевшим одно или несколько отражений в основном металле.

Швы толщиной 10-25 мм контролируют искателем с углом ввода луча α=65-70°. При этом нижняя часть шва прозвучивается прямым или двукратно отраженным лучом, а верхняя - однократно отраженным (см. рис. 17, г).

Швы листов толщиной менее 10 мм могут быть прозвучены с помощью типовых искателей лучом, претерпевшим многократные отражения в основном металле (рис 17, д). Минимальное число отражений n, претерпеваемых ультразвуковым лучом в основном металле до входа в шов составляет

Для обеспечения высокой достоверности контроля швов малой толщины целесообразно использовать специальные искатели с уменьшенной стрелой, позволяющие прозвучивать нижнюю часть шва прямым лучом

При контроле стыковых швов любой толщины угол ввода луча и способ прозвучивания определяют собой зону перемещения искателя.

При прозвучивании шва прямым лучом искатель перемещают от валика усиления на расстояние (см. рис. 17, б, в)

Особенности контроля стыковых, соединений большой толщины

Опыт контроля сварных соединений большой толщины (100 мм и более) показал, что ультразвуковая дефектоскопия является наиболее надежным средством их проверки. Швы толщиной 100 - 200 мм доступны гаммаграфированию, но чувствительность и производительность при этом оказываются весьма низкими. С помощью бетатрона можно контролировать швы толщиной до 500 мм, но реализация этого способа проверки затрудняется дороговизной аппаратуры и необходимостью строительства специально оборудованного помещения.

Трудности, возникающие при ультразвуковом контроле сварных соединений большой толщины, прежде всего связаны с необходимостью обеспечения высокой чувствительности контроля. Предельная толщина доступных проверке сварных соединений определяется величиной зерна металла, поэтому вопросы контроля соединений большой толщины и крупнозернистых швов целесообразно рассматривать совместно.

Сварные соединения толщиной до 150 - 200 мм из сталей перлитного класса, выполненные многослойной сваркой или электрошлаковой с последующей нормализацией, могут быть проконтролированы с помощью серийных ультразвуковых дефектоскопов При прозвучивании обычно применяют искатели с углом призмы 30 или 40°. Часто для большей надежности контроля производят последовательное прозвучивание обоими искателями. Искатель с углом призмы 50° используют для выявления дефектов в мертвой зоне шва, которая не могла быть прозвучена искателями с меньшим углом призмы. В связи со значительным уменьшением чувствительности при возрастании толщины контроль рекомендуется вести, как правило, прямым лучом с обеих поверхностей изделия. Лишь при толщине швов не более 100 - 150 мм (в зависимости от структуры металла) допустим контроль однократно отраженным лучом с одной поверхности соединения, если нет доступа к противоположной поверхности.

По этой же причине при контроле сварных соединений толщиной более 200 - 250 мм возникает необходимость в увеличении чувствительности по мере углубления ультразвукового импульса в толщу металла шва. Обычно пределов временной регулировки чувствительности серийных дефектоскопов оказывается недостаточно для выравнивания чувствительности по глубине. В этом случае приходится прибегать к послойному способу контроля, при котором сначала на пониженной чувствительности контролируется верхняя часть металла шва, а затем при переходе к контролю более глубоких слоев чувствительность увеличивается. Для контроля послойным способом сварных соединений толщиной до 700 мм разработаны специальные дефектоскопы, в которых с помощью переключателя одновременно меняется задержка развертки и чувствительность (например дефектоскоп УДЦ-13).

Возможность ультразвукового контроля сварных соединений особо большой толщины и сварных соединений из материала с крупнозернистой структурой, в частности, из аустенитных сталей, в большой степени зависит от технологии сварки и термообработки. Поэтому при возникновении трудностей в проведении контроля методика дефектоскопии отрабатывается на образцах с моделями дефектов, расположенных на разной глубине. В начале исследования пытаются обнаружить близкие дефекты, а затем - более глубоко залегающие. Если при выявлении искусственных дефектов никаких сигналов на экране не наблюдается при максимальной чувствительности дефектоскопа, то рекомендуется использовать искатель с уменьшенным углом призмы, увеличенным диаметром пьезопластины и пониженной рабочей частотой. Не следует применять очень низкие частоты, так как при этом ухудшается отношение сигнал-шум. При большом уровне структурных помех для увеличения отношения сигнал-шум необходимо уменьшить угол призмы искателя и длительность, но не амплитуду зондирующего импульса, увеличить диаметр пластины и применить фокусировку ультразвука (только для выявления дефектов в ближней зоне).

Для оценки качества швов большой толщины по данным ультразвуковой дефектоскопии необходимо изучить технологию сварки данного соединения, характер возникающих в нем дефектов при возможных нарушениях нормального режима сварки, а также особенности выявления этих дефектов при озвучивании их с разных сторон.

В большинстве случаев в результате предварительных исследований удается разработать достаточно четкую методику определения качества швов больших толщин с помощью ультразвуковой дефектоскопии.

В настоящее время ультразвуковая дефектоскопия применяется для проверки качества многих стыковых сварных соединений толщиной до 700 мм, например, для контроля электрошлаковой сварки корпусов доменных печей, станин гидравлических прессов, корпусов атомных реакторов и т.п. Однако в некоторых случаях нельзя добиться выявления дефектов в сварных соединениях. Это обычно имеет место при контроле аустенитных сталей с размером зерна порядка 1 мм и более, а также перлитных сталей с крупной видманштедтовой структурой, особенно при значительной толщине их. Таким образом, существует класс сварных соединений, не проверяемых ультразвуком при современном состоянии этого метода дефектоскопии.

Особенности контроля стыковых швов малой толщины

Основная трудность, возникающая при контроле сварных швов малой толщины (менее 10 - 15 мм), состоит в том, что ложные сигналы, отраженные от валика усиления или подкладной планки, почти совпадают во времени с ожидаемыми сигналами от дефектов.

Для повышения разрешающей способности следует стремиться, чтобы средняя часть или корень шва, где наиболее вероятно появление непроваров и шлаков, контролировалась прямым лучом. Это достигается при больших углах призмы и малой стреле искателя. Верхняя часть шва контролируется однократно отраженным лучом.

Чем меньше толщина сварного шва, тем больше должен быть угол призмы искателя. При углах 55 - 57° появляется довольно интенсивная поверхностная волна, что ограничивает дальнейшее увеличение угла призмы. При возрастании угла призмы необходимо увеличить стрелу искателя, чтобы не возникало отражения ультразвука от переднего угла призмы. Избежать это можно, размещая пьезопластину ближе к контактной поверхности призмы, а также придавая пьезопластине полукруглую или прямоугольную формы и уменьшая ее размеры. При этом для сохранения достаточно высокой направленности излучения необходимо повышать частоту. Высокая частота в то же время способствует дальнейшему повышению лучевой разрешающей способности за счет уменьшения длительности зондирующего импульса.

Для контроля сварных соединений труб, выполненных односторонней сваркой, применяют искатели, контактная поверхность которых соответствует форме трубы. Если диаметр трубы менее 25 мм, необходимо применять искатели с фокусирующим протектором, предотвращающим расхождение лучей в стенке трубы. Использование фокусирующего протектора полезно также при контроле труб большего диаметра (25 - 60 мм).

Настройка аппаратуры при контроле труб также выполняется по угловому отражателю, хорошо имитирующему основной тип дефекта - непровар в корне шва. Размеры угловых отражателей определяются толщиной контролируемого соединения и типом искателя. Так, например, для искателя с углом призмы β=53° при контроле швов толщиной 7 - 15 мм размеры углового отражателя составляют 5 мм 2 (глубина 2 мм, ширина 2,5 мм). Бракуются соединения с дефектами, эхо-сигнал от которых превосходит сигнал от углового отражателя по амплитуде и условной высоте. Дефекты типа отдельных пор диаметром 1 мм и менее при такой чувствительности практически не выявляются

Контроль стыковых сварных швов в конструкциях железнодорожного транспорта

Метод ультразвуковой дефектоскопии стыко вых сварных соединений толщиной от 10 до 50 мм широко используется при изготовлении, ремонте и эксплуатации пролетных строений железнодорожных мостов локомотивов и вагонов.

При обнаружении недопустимых пороков в шве произ водят ремонт дефектного участка с последующим повторным контролем.

В случае обнаружения включений, расположение v размеры которых по данным ультразвуковой дефектоскопии не позволяют забраковать шов, сомнительный участок шва подвергают рентгенографированию с целью уточнения характера включений.

Контроль стыковых соединений в паропроводах и котлах

Сварные соединения труб паропроводов диаметром 130 мм и более с толщиной стенок 15-60 мм выполняют чаще всего на подкладных кольцах (рис. 19), хотя в последнее время используют способ сварки без подкладных колеи с проплавлением корня шва.

Рис. 19. Схема контроля сварного соединения паропровода.

В настоящее время ультразвуковую дефектоскопию применяют как обязательный способ проверки качества этих соединений, а просвечивание проникающими излучениями - как дополнительный способ. Для контроля применяют дефектоскопы с рабочей частотой 1,8 МГц и призматические искатели с углом β=40°. При угле β=40° можно контролировать чувствительность по отражению от подкладного кольца и по положению на экране дефектоскопа легко отличать эти отражения от сигналов, связанных с дефектами.

Верхнюю часть сварного шва с толщиной стенки до 40 мм контролируют однократно отраженным лучом (рис. 19, положение Б), а нижнюю часть - двукратно отраженным лучом (положение В). Контроль производится в один прием, т е. верхняя и нижняя часть шва проверяются за одно движение искателя. Сварные швы толщиной более 40 мм контролируют в два приема: сначала проверяют корневую часть шва прямым лучом (положение А), а затем - верхнюю часть однократно отраженным лучом.

Настройка чувствительности производится по угловому отражателю площадью 5 мм 2 в тест-образце. Если проверка ведется за один проход искателя, отражатель выполняется только на внутренней стороне тест-образца, а если за два прохода, - то на внутренней и на внешней поверхностях. При поиске дефектов чувствительность увеличивается в 1,5 - 2 раза, а при исследовании дефектов чувствительность восстанавливается.

Сварные соединения, в которых не обнаружены дефекты с амплитудой эхо-сигнала больше, чем от отражателя площадью 5 мм 2 , считают годными и оценивают баллом 3. В дальнейшем учитывают дефекты только с сигналами большей амплитуды.

Сварные соединения бракуют (оценивают баллом 1) в следующих случаях:

    обнаружен хотя бы один дефект на расстоянии более 5 мм от поверхности сварного соединения Такие дефекты выявляются труднее дефектов, расположенных у поверхности;

    обнаружен дефект в корне шва, от которого амплитуда импульса или пробег его по экрану больше, чем от отражателя площадью 7 мм 2 ;

    в корне шва обнаружен одиночный дефект, условная протяженность которого превышает 10%, или ряд дефектов, суммарная условная протяженность которых превышает 20% от периметра шва.

Сварные соединения с дефектами в корне шва, амплитуда эxo-сигнала от которых больше чем от отражателя площадью 5 мм 2 , но допустимые с точки зрения изложенных выше требований, оцениваются баллом 2 и допускаются к эксплуатации, если характер отражения от них ее имеет типичных признаков отражений от трещин.

Аналогично проверяют кольцевые сварные соединения донышек с камерами коллекторов паровых котлов.

Многолетняя практика ультразвукового контроля сварных швов паропроводов и коллекторов показала надежное выявление опасных дефектов типа трещин и непроваров, поэтому контроль ведут без дублирования просвечиванием.

Ультразвуковой контроль без дублирования просвечиванием также применяют при оценке качества швов котлов паровозов при их ремонте. Прозвучиванию подвергают всю длину швов, имеющих иногда протяженность до 15 м. Внутреннюю часть шва толщиной 18 мм прозвучивают прямым лучом, а наружную часть - однократно отраженным, излучаемым искателем с углом призмы β=50°. Участки швов, в которых по данным ультразвукового контроля обнаружены дефекты с условной протяженностью 5 мм и более, подлежат вырубке, последующей заварке и контролю.

Угловые сварные соединения

Угловые швы сварных соединений долгое время контролировали в основном внешним осмотром и промером. Более надежные методы контроля в промышленности почти не применяли.

Вместе с тем, в угловых швах могут быть не обнаруживаемые внешним осмотром внутренние дефекты в виде пор, шлаковых включений, непроваров и трещин, которые снижают прочность соединений, особенно при воздействии вибрационных нагрузок.

Разработанные в 1957 г. аппаратура и методика позволили применить для контроля качества угловых швов метод импульсной ультразвуковой дефектоскопии.

В настоящее время ультразвуковая дефектоскопия является единственным методом, выявляющим в угловых швах тавровых и крестовых соединений трещины с раскрытием менее 0,2 мм и тонкие непровары в корне шва.

На рис. 20 приведены схемы прозвучивания угловых швов тавровых соединений, которые могут быть использованы для выявления внутренних дефектов.

Рис. 20. Схемы прозвучивания угловых швов при выявлении: а - непровара в корне шва, б - продольных трещин; в - пор и шлака, г - поперечных трещин

Наиболее эффективным является метод ввода ультразвукового луча в шов через основной металл привариваемого листа (схема 3), так как он позволяет выявить все виды внутренних дефектов в угловых швах тавровых и крестовых соединений и наиболее прост. При этом угол ввода колебаний должен быть таким, чтобы направление луча было приблизительно перпендикулярным к сечению, в котором площадь дефектов максимальна.

Анализ геометрии распространения луча показывает, что прозвучивание наплавленного металла шва с катетами K 1 и К 2 при толщине привариваемого листа δ может быть осуществлено одним искателем с углом ввода луча α 1 или последовательно двумя искателями с углами ввода луча α 1 и α 2 (рис. 2). Угол ввода луча α 1 определяется равенством

Так как K 1 ≈К 2 =K, то α 1 =45°. Искателем с углом ввода луча α 1 =45° полностью прозвучивается угловой шов, для которого справедливо соотношение

Это соотношение обычно имеет место при δ>30 мм. При толщинах δ≤30 мм искателем с углом ввода луча α 1 =45° прозвучивается лишь часть шва, заштрихованная на рис. 2 сплошными линиями.

Рис. 21. Схема перемещения искателя при контроле углового шва: 1 – полка; 2 – стенка (привариваемый лист)

Остальная часть шва (заштрихована пунктирными линиями) может быть прозвучена искателем с углом вода луча α 2 > α 1 . Минимальная величина угла α 2 , обеспечивающая надежный контроль объема шва, заштрихованного пунктирными линиями, определяется из равенства

Следует отметить, что для повышения надежности выявления дефектов, расположенных у поверхности шва, целесообразно применять искатели с углом α 1 несколько меньшим 45°.

При контроле искатель перемещают в пределах, определяемых минимальным L min и максимальным L max расстояниями его от полки (рис. 21). Эти расстояния могут быть определены по следующим формулам:

Расстояние от искателя до полки, при котором прямой ультразвуковой луч проходит через ось симметрии таврового соединения, составляет

Очевидно, что корень шва может быть прозвучен прямым лучом, если
. При невыполнении данного неравенства прозвучивание ведут однократно отраженным лучом, перемещая искатель на расстоянии

Расстояния A min , A m ax и L cp определяют по шкалам глубиномера или координатной линейки так же, как при контроле стыковых швов.

В процессе прозвучивания швов выбоины на поверхности металла иногда вызывают отражение ультразвука, что усложняет контроль и может привести к ложному представлению о наличии дефектов, в действительности отсутствующих в шве. Для того чтобы индикаторы не реагировали на ложные эхо-сигналы, прозвучивание углового шва следует вести дефектоскопом в режиме «Контроль по слоям». В этом случае на экране дефектоскопа «просматривается» участок пути ультразвукового луча через наплавленный металл шва и индикаторы реагируют на импульсы, отраженные от дефектов шва. Ложные эхо-сигналы достаточно легко можно отличить от импульсов, вызванных дефектом, путем измерения координат расположения отражающей поверхности. При этом прежде всего следует измерить расстояние L от искателя до отражающей поверхности. Для выявления поперечных трещин следует дополнительно прозвучивать каждый шов соединения наклонным искателем по схеме 1 или 3 (рис. 20, г).

В некоторых тавровых соединениях допускается технологический непровар, не превышающий заданной величины.

Контроль угловых швов соединений со сквозным проплавлением

В ответственных тавровых и крестовых соединениях сварных металлоконструкций, как правило, предусматривается полный провар в корне шва. Толщина привариваемых листов (стенки) обычно составляет 8 - 20 мм.

Качество швов таких соединений может быть проконтролировано методом ультразвуковой дефектоскопии путем прозвучивания наплавленного металла однократно отраженным лучом. При этом непровар в корне шва наиболее устойчиво выявляется искателем с углом призмы β≈50°, а трещины, поры, шлаковые включения и непровары по кромке - искателем с углом β≈40°.

Поскольку наиболее вероятным дефектом является непровар в корне шва, контроль целесообразно начинать с прозвучивания соединения искателем с углом призмы β≈50°. При этом искатель следует перемещать на расстоянии от полки, равном L cp ±5 мм; величина L cp может быть определена по соотношениям (5, 6), по глубиномеру дефектоскопа или по координатной линейке.

Участки швов, в которых не обнаружен непровар в корне шва, прозвучивают искателем с углом призмы β≈40°, перемещаемым в пределах, определяемых расстояниями L min и L max от полки соединения (см. рис. 21).

Контроль угловых швов соединений с технологическим непроваром

Угловые швы крестовых соединений, в которых не предусмотрен полный технологический провар, могут быть проконтролированы, если толщина стенки превышает 20 мм Их прозвучивают прямым лучом, излучаемым искателем, расположенным на поверхности стенки. При этом недопустимые дефекты в шве или непроверенный угол стенки вызывают эхо-сигнал большой амплитуды При контроле качественного шва отраженный от технологического непровара сигнал будет значительно слабее, так как торец стенки в месте предусмотренного непровара имеет достаточно плоскую и гладкую поверхность Очевидно, что аналогично можно проконтролировать угловые швы тавровых соединений с толщиной стенки более 20 мм При меньшей толщине швы не могут быть прозвучены прямым лучом. Попытки контролировать их однократно отраженным лучом не дали положительных результатов, так как возникающие при этом эхо-сигналы от технологического непровара не удавалось отличать от эхо-сигналов, обусловленных недопустимыми дефектами Поэтому угловые швы тавровых соединений с технологическим непроваром и толщиной стенки менее 20 мм следует прозвучивать лучом, вводимым через наружную плоскость полки (см. схему 1 и 2 на рис. 20, а).

При изготовлении некоторых конструкций требуется, чтобы технологический непровар в тавровых соединениях не превышал определенной допустимой величины.

Рис. 22. Тавровое соединение: 1 - полка; 2-непровар в корне шва; 3 - стенка; 4 - полный провар

При ультразвуковом контроле ширина b непровара в корне шва таврового соединения (рис. 22) может быть определена двумя методами: сравнением амплитуд эхо-сигналов от непровара и моделей непровара, выполненных в тест-образце; сравнением амплитуд эхо-сигналов от непровара и бесконечной плоскости (безэталонный метод).

При обоих методах используют наклонные искатели, включенные по раздельной схеме; для удобства контроля они могут быть выполнены в общем корпусе.

Нахлесточные сварные соединения

Швы соединений внахлестку целесообразно прозвучивать со стороны основного листа однократно отраженным лучом с помощью искателя, включенного по совмещенной схеме (рис. 23).

Угол ввода луча определяется соотношением горизонтального K 1 и вертикального К 2 катетов и может быть рассчитан по выражению (1) (см. раздел «Ультразвуковая дефектоскопия угловых сварных швов»). Причем,
.

Рис. 23. Схема контроля соединений внахлестку однократно отраженным лучом искателя, включенного по совмещенной схеме, при выявлении: а – трещин; б – пор и шлаковых включений; в – непроваров по вертикальной кромке

В процессе контроля искатель перемещают по плоскости основного листа толщиной δ 1 в пределах:

отсчитываемых от торца привариваемого листа.

При этом обеспечивается выявление трещин, непроваров вертикальной кромки и корня шва, а также одиночных включений и их скоплений. В то же время обнаружение непроваров горизонтальной кромки (рис. 24) не гарантируется. Объясняется это тем, что ультразвуковой луч, попадая на горизонтальный плоский дефект, отражается под тем же углом и не возвращается на иcкатель.

Горизонтальные непровары могут быть выявлены зеркально-теневым методом при включении искателей по раздельной схеме (рис. 24). Ультразвуковой импульс, проходя от передающего искателя через бездефектный шов, принимается приемным искателем. При этом на экране появляется импульс на расстоянии от зондирующего, соответствующем глубине залегания отражателя (рис. 24, а)

При обнаружении в шве горизонтального непровара или другого крупного дефекта, расположенного в наплавленном металле шва, амплитуда импульса на экране падает (рис. 24, б).

Рис. 24. Схема контроля соединений внахлестку зеркально-теневым методом искателями, включенными по раздельной схеме.

При контроле необходимо строго соблюдать расстояние между точками ввода искателей

Чтобы обеспечить прозвучивание всего сечения наплавленного металла шва, необходимо перемещать искатели примерно на длину, соответствующую величине горизонтального катета К 1 . При отсутствии дефектов импульс на экране трубки должен оставаться примерно постоянным по амплитуде и исчезать на концах зоны перемещения.

При наличии дефекта ширина участка перемещения, на котором наблюдается импульс от передающего искателя, существенно сокращается.

Исследования показали, что надежность выявления дефектов в швах соединений внахлестку методом ультразвуковой дефектоскопии значительно выше, чем при методах просвечивания.

Из большого многообразия методов акустического контроля (ГОСТ 23829-85) для дефектоскопирования наибольшее распространение получили (Рис 2.7.):

    Эхо-метод;

    Зеркальный;

  • Зеркально-теневой;

    Дельта-метод.

Рис 2.7. Методы ультразвуковой дефектоскопии

Эхо-метод ультразвукового контроля

Эхо-метод ультразвуковой дефектоскопии основан на излучении в контролируемое изделие коротких зондирующих импульсов и регистрации эхо-сигнала, отраженного от дефекта. Временной интервал между зондирующим и эхо-импульсами пропорционален глубине залегания дефекта, а амплитуда, в определенных пределах, отражающей способности (размеру) дефекта.

К преимуществам эхо-метода относятся :

    односторонний доступ к изделию;

    относительно большая чувствительность к внутренним дефектам;

    высокая точность определения координат дефектов.

К недостаткам эхо-метода можно отнести :

    низкую помехоустойчивость к поверхностным отражателям;

    резкую зависимость амплитуды эхо-сигнала от ориентации дефекта;

    невозможность контроля качества акустическог контакта в процессе перемещения ПЭП, так как при о сутствии дефектов на выходе отсутствуют какие-либо сигналы.

Несмотря на указанные недостатки, эхо-метод является наиболее распространенным методом ультразвуковой дефектоскопии деталей подвижного состава. С помощью этого метода обнаруживают более 90% дефектов.

Отличительной особенностью метода является то, что при контроле изделий регистрируются и анализируются практически все сигналы, приходящие из изделия после излучения зондирующих колебаний.

Поэтому при контроле изделий с плоскопараллельными поверхностями возможен одновременный прием эхо-сигналов как от дефекта, так и от противоположной поверхности (рис. 2.8.). Причем временное положение эхо-сигнала от дефекта относительно зондирующего импульса пропорционально глубине h его залегания

где с – скорость распространения ультразвуковых колебаний в изделии


Рис. 2.8. Формирование эхо- и донного сигналов

Амплитуда эхо-импульса сложным образом зависит от величины дефекта, свойств его поверхности и его ориентации, а также затухания ультразвуковой волны в изделии и расстояния до дефекта

Естественно, интервал времени между зондирующим импульсом и эхо-сигналом от противоположной (донной) поверхности пропорционален высоте Н изделия.

Сигнал от противоположной поверхности может отсутствовать при следующих ситуациях:

    донная поверхность не параллельна поверхность ввода ультразвуковых колебаний;

    дефект имеет значительный размер, полностью перекрывающий звуковой пучок

    высота (толщина) изделия настолько велика, что вследствие затухания ультразвуковых колебаний амплтуда эхо-сигнала от противоположной поверхности имеет очень малую величину.

Если дефект имеет протяженность, то его границы, определенные эхо-импульсным методом, также могут отличаться от истинных. В связи с этим в ультразвуковой дефектоскопии используют понятие условный размер дефекта.

Для обнаруженного эхо-импульсным методом дефекта можно измерить три условных размера:

    условную ширину ΔХ ;

    условную высоту ΔН ;

    условный размер по длине изделия Δ L .

Понравилась статья? Поделиться с друзьями: