История печатей. Читальный зал мирта Книгопечатанье - это

Этот раздел кратко рассказывает об истории развития печати - от древних времён, когда книгопечатание делало первые шаги в древнем Китае, и до наших дней, когда развитие цифровой техники буквально преображает отрасль. Почитайте, это на самом деле интересно.

Китай: древние истоки книгопечатания

Зарождение печати

Первая технология печати появилась в древнем Китае к концу II века. К этому времени у китайцев уже были три необходимых элемента этой технологии: во-первых, бумага; во-вторых, краска; и, в-третьих, умение вырезать (или выгравировывать) тексты на различных поверхностях. Это, например, были буддийские изречения, вырезанные на мраморных колоннах буддийских храмов. Легенды гласят, что паломники смачивали выступающие части букв краской, а затем прикладывали к ним увлажненные листы бумаги. В то время были широко распространены печати, служившие для переноса религиозных текстов и изображений на бумагу. Вероятно, именно необходимость в частом использовании таких печатей и привела к тому, что в IV или V веках в Китае появились краски со свойствами, делающими их пригодными к книгопечатанию.
Печати, и, в особенности колонны, были не слишком удобными приспособлениями; поэтому в VI веке появились деревянные бруски с вырезанными на них изображениями. Текст сперва писали на листе бумаги; затем свежий рисунок прикладывали к гладкой поверхности деревянного бруска, смазанного рисовой пастой, которая впитывала краску; после этого гравер срезал оставшиеся чистыми части поверхности бруска. В результате зеркальное изображение текста выступало над деревянной поверхностью.
Для получения оттиска брусок смачивали краской с помощью кисти, лист бумаги накладывали сверху и притирали щеткой. Таким способом можно было печатать лишь с одной стороны листа.
Самые старые из известных печатных работ, произведенных с помощью деревянных брусков, - это японский буддийский трактат (примерно 764–770 гг.), заказанный императрицей Шото-ку, и китайский текст 868 года. Самая ранняя книга была напечатана в 932 году, это так называемая «Бриллиантовая Сутра», первая книга из собрания китайской поэзии в 130 томах, созданного по инициативе министра китайского двора Фон-Тао.
Столь быстрый прогресс в области воспроизведения книги однозначно свидетельствовал об высоком уровне образования и тяге к просвещению древних китайцев. Любопытно, что именно китайский император вошел в историю как правитель, вознамерившийся уничтожить все книги прежних времен. Бесконечно тщеславный император Цинь Ши-Хуанди, тот самый, кто возвел гигантскую китайскую стену, в конце II века до н.э. распорядился сжечь все книги его империи, дабы история Китая начиналась с него. Посмевших ослушаться этого указа ссылали на постройку Великой стены. Можно сказать, что само величие этого грандиозного сооружения свидетельствует об упорстве китайцев, не желающих уничтожать книги, идущих на смерть ради спасения Знания.

Изобретение наборного шрифта

Примерно в 1041–1048 гг. китайский алхимик Пи-Шен создал первый в истории сменный шрифт, сделав его из обожженной смеси глины и клея. Он набирал текст, помещая литеры вплотную одна к другой на металлическую пластину, покрытую смесью резины, воска и бумажного пепла. Пластина нагревалась, смесь расплавлялась и затем, остывая, прочно прикрепляла набор к пластине. Снять литеры было можно, снова нагрев пластину.
Таким образом, можно заключить, что Пи-Шен впервые нашел универсальное решение многих проблем типографики: он разработал технологию производства, набора и повторного использования шрифта.
Примерно в 1313 году чиновник по имени Ван-Чен приказал мастерам вырезать более чем 60 тысяч иероглифов на деревянных блоках для печати исторической монографии. Этому человеку также приписывают изобретение горизонтальных рамок-"касс«, вращающихся вокруг вертикальной оси, что упрощало процесс набора. Однако изобретения Пи-Шена и Ван-Чена не получили распространения в Китае. И это понятно: китайский алфавит тогда насчитывал до 40 тысяч знаков, и создание полного шрифта было делом не менее трудоемким, чем вырезание на дереве целых книг.
В Корее, напротив, технология печати, впервые появившаяся в первой половине XIII века, получила интенсивное развитие по инициативе короля Хтаи Тьёна, который в 1403 году издал указ об отливке из бронзы 100 тысяч литер шрифта. До 1516 года были созданы еще девять наборов литер; два из них были отлиты в 1420 и 1434 годах, когда в Европе типографика еще не была изобретена.

Появление бумаги в Европе (XII век)

Бумага, секрет производства которой был известен лишь скрытным китайцам, по караванным путям доставлялась в один из крупнейших торговых центров средневековой Азии - Самарканд, а уже оттуда развозилась по всему арабскому миру.
Технология изготовления бумаги распространялась теми же, протоптанными вьючными верблюдами, путями. Арабы получили этот секрет от китайских пленников, захваченных в битве при Таласе (751 год). К XIII веку мастерские бумагоделателей были в каждом арабском городе, от Багдада до Кордовы (Испания тогда была под арабским господством). В Европу бумага, начиная с XII века, попадала через портовые города Италии, имевшие тесные торговые связи с арабским миром, а также, вне всякого сомнения, наземным путем - через Испанию во Францию. Изучая материал, из которого была изготовлена привозная бумага, европейцы постепенно раскрыли секрет ее изготовления; возможно, рецепт привезли в середине XIII века возвращающиеся из крестовых походов рыцари. К 1275 году бумагоделательные производства появились в Италии, в середине XIV века - во Франции и Германии.
В отличии от рецепта изготовления бумаги, секреты книгопечатания не пришли в Европу из Китая. По-видимому, эта технология была унаследована уйгурами, кочевниками, жившими на границе Монголии и Туркестана; об этом свидетельствуют найденные в тех местах деревянные бруски с вырезанными на них уйгурскими буквами, относящиеся к началу XIV века. Кочевые племена уйгуров, считающиеся самыми передовыми из всех татаро-монгольских народностей, принесли свои типографские навыки в Египет, но здесь распространение технологии печати натолкнулось на серьезное препятствие. Дело в том, что, хотя Ислам и разрешал использование бумаги для записи слов Аллаха, воспроизведение их искусственными, техническими средствами строжайше запрещалось.

Гутенберг: изобретение книгопечатания

Ключевые элементы, без которых книгопечатание было бы невозможным, медленно, один за другим, создавались в средневековой Западной Европе, где для этого были наиболее благоприятные культурные и экономические условия.

Ксилография

Ксилография, техника печати с деревянной формы, появилась в Европе не ранее второй половины XIV века. Это совпадает по времени и, скорее всего, является прямым следствием появления в Европе бумаги. Бумага как нельзя лучше подходила для репродуцирования, будучи существенно прочнее такого материала, как папирус, и гораздо доступнее чрезвычайно дорогого пергамента, к тому же имеющего грубую, неровную поверхность.
Вначале ксилография использовалась лишь для воспроизведения орнаментальных буквиц в рукописных манускриптах, но вскоре с ее помощью начали печатать религиозные рисунки. Позже они стали сопровождаться пояснительным текстом. С ростом мастерства граверов текст начал приобретать большее значение, чем иллюстрация. В первой половине XV века начали появляться маленькие, еще убогие книжицы из нескольких страниц. Эти «первокниги», будь то религиозные труды или латинская грамматика Элиуса Донатуса (их называли «донатами»), печатались с помощью техники, крайне схожей с китайской.
Одновременно в разных частях Европы велась работа по созданию шрифта, вырезанного из деревянных блоков, по одной букве на каждом бруске, с тем, чтобы на вырезать всю страницу целиком, а составлять ее из таких литер. Изобретение первого типографского шрифта приписывают голландцу Лауренсу Янсену, иначе Костеру, создавшему такой шрифт около 1430 года. Однако эти первые попытки были несовершенными из-за необходимости сделать буквы относительно малого размера. Буквы латиницы гораздо меньше китайских иероглифов, и гравировка их на дереве была очень сложной операцией. Более того, полученный шрифт оказался чрезвычайно хрупким, и использовать его можно было лишь ограниченное количество раз.

Металлографическая печать (примерно 1430 год)

Металлографическая печать считается прямой предшественницей полиграфии. Средневековые ремесленники, прежде всего граверы и кузнецы, владели технологией использования пресс-форм. Кто-то из них понял, что эту технику можно применить и для создания печатных форм, более качественных и долговечных, чем вырезанные из дерева. Процесс изготовления, скорее всего, состоял из трех этапов: 1) создавался набор медных или бронзовых пресс-форм, на каждой из которых выгравировывалась определенная буква алфавита; 2) с помощью этих пресс-форм шрифт выдавливался на глиняной матрице; 3) в углубления заливался свинец, который, застывая, превращался в литеры.
Теоретически такой способ изготовления шрифта имел неоспоримые преимущества. Для создания любого количества литер определенной буквы нужно было изготовить всего одну пресс-форму, и все эти литеры были идентичны между собой. Создание глиняной матрицы и заливка свинца были простыми и быстрыми операциями, а свинец имел гораздо более высокую прочность, чем дерево.
Считается, что металлографическая печать была изобретена в Голландии около 1430 года. Между 1434 и 1439 годами ее применял и Гутенберг в Штрассбурге (ныне Страсбург, Франция).
Эти ранние эксперименты не наши практического применения из-за проблем с созданием глиняных матриц. Было очень сложным делом выдавливать каждую букву с одной и той же силой - в результате шрифт получался разной высоты. Что еще хуже, при выдавливании каждой буквы соседние буквы деформировались.
Поэтому главным значением этой технологии стало появления самих понятий пресс-формы, матрицы и литер.

Изобретение книгопечатания Гутенбергом (около 1450 года)

Сочетание пресс-формы, матрицы и свинца при массовом производстве идентичного шрифта было одним из двух важнейших компонентов, необходимых для создания европейской технологии книгопечатания. Вторым компонентом стала собственно концепция печатного пресса, идея, никогда не возникавшая на Дальнем Востоке.
Иоганн Гутенберг считается создателем сразу двух этих компонентов.
Как это ни удивительно, но его подписи нет ни на одной из приписываемых ему печатных работ. Гутенберг был серебряных дел мастером; считается, что он работал не один, а в содружестве с купцом Иоганном Фустом и его каллиграфом Петером Шаффером, будущим зятем Фуста. Гутенберг в этом сообществе выполнял роль инженера, и именно поэтому не подписывал печатаемые книги. Предположение о наличие у его изобретения соавторов основывается исключительно на толковании некоторых аспектов иска, который Гутенберг подал против своих компаньонов и который он проиграл в 1455 году.
Самый убедительный довод в пользу того, что именно Гутенберг изобрел книгопечатание, как ни странно, исходит от главного его хулителя, Иоганна Шаффера, сына Петера Шаффера и внука Иоганна Фуста. Хотя Шаффер в 1509 году заявил, что это изобретение принадлежит целиком и полностью его отцу и деду, в 1505 году он писал, что «похвальное искуство книгопечатания изобретено удачливым Иоганном Гутенбергом в Майнце в 1450 году». Можно предположить, что Иоганн Шаффер знал об этом от своего отца; в таком случае, совершенно неясно, что же заставило его впоследствии столь кардинально изменить свое мнение. Ведь к тому времени ни его отца, ни его деда уже не было в живых: Иоганн Фуст умер в 1466 году, а Петер Шаффер - в 1502.
Первый печатный шрифт был изготовлен следующим образом: пресс-форма была выгравирована на мягком металле (меди либо бронзе); затем в пресс-форму был залит свинец, являвшийся матрицей для собственно литер, изготавливаемых из особого сплава, который, в свою очередь, заливался в матрицу.
Спектральный анализ раннего шрифта показал, что сплав состоял из свинца, олова и сурьмы, тех же компонентов, которые используются и в наши дни: олово, потому что чистый свинец быстро окисляется и портит матрицу, в которую заливается; сурьма, потому что сплав свинца и олова недолговечен.
Вероятно, именно Петер Шаффер около 1475 года предложил заменить пресс-формы из мягкого металла на стальные, а матрицы делать из меди. Этот метод просуществовал, не меняясь, до середины XIX века.
Работа печатника с самого начала состояла из четырех базовых операций: 1) выбор литер буква за буквой из кассы печатного шрифта; 2) выстраивание их друг за другом на специальной сборной «палочке» - деревянной полоске с уголками; 3) выравнивание строк - создание пробелов между буквами с помощью «пробельного материала», небольших чистых кусочков свинца; и 4) после печати - возвращение литер обратно в кассу.


Печатный пресс Гутенберга

Свидетельства того периода, включая материалы судебного иска 1439 года, связанного с деятельностью Гутенберга в Штрассбурге, не оставляют практически никаких сомнений в том, что с самого начала для книгопечатания использовался печатный пресс.
Сперва печатный пресс был слегка переделанный давильным прессом, с неподвижным «ложем» (нижней пластиной) и подвижным «столом» (верхней пластиной), перемещаемым в вертикальной плоскости с помощью небольшого ворота на стержне с резьбой. Набранный шрифт, закрепленный лигатурами или с усилием вставленный в металлическую рамку-форму, покрывался краской, сверху на него помещали лист бумаги, а затем все это вместе зажималось в «тиски», образованные «ложем» и «столом».
Такая технология была значительным шагом вперед по сравнению с техникой, используемой в Китае, так как теперь можно было получить четкое, качественное изображение с обеих сторон бумажного листа. Однако такая печать была непростой и медленной работой: было довольно сложно вставить лист кожи, используемый для нанесения краски, между «столом» и формой; кроме того, для достижения необходимого давления нужно было сделать несколько поворотов ворота, а затем столько же в обратную сторону - чтобы вставить новый лист бумаги.
Считается, что печатный пресс описанной конструкции появился довольно рано, возможно, даже до 1470 года.
Первым принципиальным усовершенствованием пресса стало появление сдвигаемого по направляющим «ложа», что позволяло печатнику вынимать форму и наносить на нее краску после каждого оттиска. Затем единственный стержень с резьбой был заменен тремя или четырьмя параллельными стержнями, что позволило поднимать «стол» одним коротким движением ворота. Однако при этом «стол» оказывал на «ложе» гораздо меньшее давление. Выходом стало разделение операций при печати: форма под прессом располагалась таким образом, что сперва печаталась одна половина страницы, а потом другая. Так появился принцип печати «в два приема», просуществовавший три столетия


После Гуттенберга

За последующие 350 лет печатный пресс претерпел существенные изменения. Примерно в 1550 году деревянные винты были заменены железными. Двадцать лет спустя появился совершенно новый двухкомпонентный элемент, состоящий из «маски» (куска пергамента с вырезанной в нем по размеру печатного изображения дырой) и «барабана» (куска толстой мягкой ткани). «Маска» предотвращала попадание краски на поля листа, а «барабан» сглаживал неравномерности в давлении, причиной которых была неодинаковая высота литер.
Примерно в 1620 году в Амстердаме Виллем Янсон Блеу добавил к вороту противовес, который поднимал «стол» автоматически. Так появился «голландский пресс», копия которого была установлена Стивеном Дэйи в Кембридже, штат Массачусетс, в 1639 году. Это был первый печатный пресс в Америке.
Около 1790 года английский ученый и изобретатель Уильям Николсон разработал метод нанесения краски с использованием цилиндра, покрытого кожей. Это было первое применение в печатном процессе вращательного движения.

Металлический пресс (1795 год)

Первый полностью металлический печатный пресс был сконструирован в Англии около 1795 года. Через несколько лет в Америке был построен металлический пресс, в котором ворот с резьбой был заменен набором металлических шарниров. Он получил название «Колумбиец»; за ним последовал «Вашингтон», созданный Сэмюэлем Растом. Последний пресс считается одним из самых совершенных винтовых прессов за всю историю; его производительность превышала 250 оттисков в час.

Стереотипия (конец XVIII века)

Непрерывно растущая потребность в печатном слове заставляла искать новые пути для повышения скорости и объемов печати. Одним из решений стала стереотипия. Эта технология состояла в следующем: в матрицу, состоящую из глиняных блоков с вытесненными на них буквами, заливали свинец, таким образом получая единую форму для печати целого листа. Можно было изготовить несколько идентичных форм; это сделало экономически целесообразным печать одного и того же материала одновременно на нескольких прессах, при этом сама матрица была постоянно пригодна к повторному использованию. Стереотипия была впервые и с большим успехом применена в Париже около 1790 года.


Механический пресс Кёнига (начало XIX века)

Идея использования в печатном деле движущей силы пара привела к созданию машины, в которой различные стадии печатного процесса были объединены в единый цикл. В 1803 году в Германии Фридрих Кёниг предложил конструкцию пресса, в котором поднятие и опускание «стола», движение «ложа» внутрь и наружу, а также нанесение краски с помощью набора валиков осуществлялось с помощью системы шестерен.
Первым реально работающим механическим прессом стала созданная в США в 1857 году «Свобода». В этом прессе «стол» опускался с помощью педали.
Следующим шагом в совершенствовании процесса печати стало использование цилиндров.
Хотя Николсон запатентовал печатный цилиндр, к которому прикреплялся шрифт, еще в конце XVIII века, он не смог создать технологию, при которой использование такого цилиндра стало бы возможным. А ведь цилиндр фактически был самой логичным элементом циклического процесса. Ведь в случае плоского «стола» давление должно было передаваться всей печатной поверхности, в то время как при использовании цилиндра сила концентрировалась лишь на узкой полоске соприкосновения цилиндра с бумагой в каждый момент времени.
Эффективность печатного цилиндра была продемонстрирована еще в 1784 году, когда во Франции на его основе был создан пресс для печати книг для слепых.
В 1811 году Кёниг со своим компаньоном Андреасом Бауэром создал пресс, в котором цилиндр выполнял функцию вращающегося «ложа» с закрепленным на нем листом бумаги. Печатная форма была закреплена на двигающемся взад-вперед плоском «столе», причем поступательное движение «стола» было связано с вращательным движением «ложа». Каждый раз при движении назад на форму с помощью красочных валиков наносилась краска.
В 1814 году первый стоп-цилиндровая печатная машина на паровой тяге была установлена в типографии «Таймс» в Лондоне. Машина имела два цилиндра, которые вращались в соответствии с возвратно-поступательным движением «ложа». Дополнительный цилиндр позволил удвоить количество оттисков, и производительность машины составляла 1100 листов в час.
В 1818 году Кёниг и Бауэр сконструировали машину, в которой один цилиндр наносил изображение на одну сторону бумаги, а другой - на обратную. Эта машина получила название «перфектор». В 1824 году американец Уильям Чёрч добавил в конструкцию печатной машины еще один элемент - автоматический механизм захвата.
Для того, чтобы цикл печати стал полностью непрерывным, печатная форма, так же как и лист бумаги, должна была располагаться на цилиндрической поверхности. В 1844 году американец Ричард Хо запатентовал конструкцию печатной машины, в которой литеры закреплялись на поверхности цилиндра большого диаметра. Эта машина позволяла достичь скорости более чем 8000 оттисков в час. Недостатком такой системы была ее ненадежность: литеры часто падали с поверхности формного цилиндра, приводя к остановкам и даже к повреждению механизма.
Дефект был устранен после того, как этот метод объединили с использованием стереотипии, то есть формировании единой печатной формы из свинцового сплава. Эксперименты начались в 1849 году, в 1856 году такая машина начала работать в типографии «Таймс», а после 1858 года этот метод печати получил широкое распространение в печатной индустрии.
Процесс автоматизации подачи бумаги в печатную машину привел к созданию ролевых машин, в которых бумага подавалась не листами, а сматывалась с роля. Технически идея ролевой подачи бумаги появилась еще в начале XIX века, но реализовать ее удалось лишь в 1865 году, когда американец Уильям Баллок сконструировал первую газетную машину с ролевой подачей. В машине было предусмотрено устройство для разрезания бумаги после печати; ее производительность достигала 12 тысяч готовых газет в час. В 1879 году тот же Баллок в сотрудничестве с Ричардом Хо добавил к конструкции механизм складывания листа.
Одновременно с этими разработками велись исследования в области альтернативных методов изготовления печатных форм. Предлагались такие технологии, как электротипия, фотомеханический процесс, фото- или электрогравировка.

Попытки механизировать набор (середина XIX века)

Механизировать процесс набора, используя технологии XIX века, было непростым делом, однако этому в немалой степени помогло изобретение в 1806 году компрессионной формовки. В 1822 году Уильям Чёрч (тот самый, который придумал механизм захвата) запатентовал в Бостоне наборную машину, представляющую из себя ячейки с литерами и клавиатуру. Нажатием клавиши соответствующая литера высвобождалась и опускалась в магазин. Выравнивание литер внутри магазина производилось вручную. В конструкции было предусмотрено устройство, постоянно докладывающее в ячейки новые литеры.
В течение последующих 50 лет появилось множество разновидностей этой машины, в том числе и обеспечивающие автоматическое выравнивание литер в магазине. Скорость работы таких машин составляла от 5 тысяч до 12 тысяч символов в час, в то время как при ручном наборе производительность выше 1500 символов в час была недостижима. Набор из таких машин выходил в виде бесконечного ряда, который приходилось вручную разбивать на строки; таким образом, полная автоматизация наборного процесса достигнута не была.
Была также предпринята попытка механизировать обратный процесс - раскладывание использованных литер по кассам, или дистрибуция. Существовала машина, позволяющая оператору продвигать ряд использованных литер по одной и нажатием соответствующей клавиши опускать очередную литеру в ее кассу, но эта машина не давала никакого выигрыша в скорости по сравнению с ручной дистрибуцией.
Процесс выравнивания строк, который был невозможен без точного расчета размеров межсловных пробелов, был главной проблемой, возникшей при попытках механизировать набор. Другой проблемой было то, что между этапами набора и дистрибуции протекало значительное время, необходимое собственно для печати, и это мешало объединить набор и дистрибуцию в единый цикл.
Изобретение строкоотливного набора (1880–1890 годы)
Линотип был сконструирован в 80-х годах XIX века в США немцем по происхождению Оттмаром Мергенталером. Линотип был первой строкоотливной машиной, которая могла отливать набор целыми строками с помощью подвижных матриц каждой буквы. Матрицы были закреплены таким образом, чтобы после использования они возвращались в соответствующую ячейку в кассе. Выравнивание строк достигалось добавлением клинообразных пробельных элементов после каждого слова. Отлитые из свинца строки собирались в набор и использовались в качестве печатной формы. Линотип мог работать со скоростью до 7 тысяч символов в час.
В 1885 году американец Толберт Лэнстон создал Монотип. Эта машина отливала буквы и собирала их в строки, суммируя ширину букв и добавляя потом пробелы для выравнивания строк. Матрицы (шрифт, применяющийся для отливки литер) можно было использовать неограниченное количество раз. Производительность Монотипа достигала 12 тысяч символов в час.
Печатное дело в XIX веке
XIX век принес в технологию печати некоторые важные инновации, напрямую не связанные с изобретением Гутенберга.

Воспроизведение графики

Первым способом репродуцирования графических иллюстраций была ксилография, печать с помощью деревянной формы. Доски с вырезанными на них изображениями могли закрепляться в одной раме с деревянными литерами.
Во второй половине XV века гравюра на металле начала вытеснять ксилографию. Этот метод, получивший название «Интаглио», что означает «глубокая печать», состоял в следующем: пластина из металла (меди, бронзы, цинка, а после 1806 года - и стали) с выгравированным или вытравленным кислотой рисунком, покрывалась краской; после этого краску аккуратно стирали так, чтобы она осталась лишь в углублениях формы; затем изображение переносилось на бумагу под давлением цилиндрического пресса, машины, по конструкции близкой мельничному прессу. Так как этот метод в корне отличался от печати с деревянного набора, листы с иллюстрациями печатались отдельно от листов с текстом.
В XIX веке машины для печати с гравированных форм были значительно усовершенствованы. Краска стала наноситься с помощью валиков, а убираться с формы - при помощи вращающихся щеток или дисков с прикрепленной к ним калькой.
Процесс глубокой печати использовался и при нанесении рисунка на ткань, при этом формой служил цилиндр с выгравированным на нем рисунком; лишняя краска убиралась с помощью скребка. В 1860 году эта технология была применена во Франции для печати обложек к школьным учебникам. На медный цилиндр было нанесено множество штрихов, настолько мелких, чтобы они могли удержать в себе краску несмотря на гравитацию, центробежную силу и воздействие скребка. Таким способом можно было печатать лишь совсем простые рисунки.

Литография: Зенефельдер (1796 год)

Литография, основанная на том, что вода и жир не смешиваются между собой, была третьим (после ксилографии и интаглио) печатным процессом, подвергшимся значительным усовершенствованиям.
В 1796 году пражский картограф Алоиз Зенефельдер исследовал свойства известняка, камня состоящего из углерода кальция и имеющего однородную пористую поверхность. Он обнаружил, что если на его поверхность нанести изображение краской на масляной основе, затем смочить камень водой, а после этого покрыть его обычной краской, то эта краска останется лишь в тех местах, куда до этого был нанесен жир. Изображение можно было воспроизвести на бумаге, прижав под давлением лист к поверхности известняка. Зенефельдер установил также, что некоторые металлы, в частности, цинк, имеют схожие свойства.
К 1850 году появились первые механические литографские прессы с известняковой формой, фланелевыми увлажняющими валиками и резиновыми красочными. Замена известняка на цинковую пластину изогнутой формы позволило создать ротационную литографскую машину. Первая такая машина была построена в 1868 году.

Светочувствительность: Ньепс (около 1820 года)

В 20-х годах XIX века Джозеф Ньепс установил, что некоторые химические вещества обладают чувствительностью к свету. Это привело к изобретению фотографии (между 1829 и 1838 годами) и созданию технологии печати фотографических изображений. Это, в свою очередь, положило начало технике фотогравюры, созданию фотохимическим способом рельефа на литографском камне или металлической форме для глубокой печати.
Уильям Генри Фокс Телбот, английский ученый и изобретатель, провел в 1852 году следующий опыт. Он поместил кусок черного тюля между объектом, который он хотел воспроизвести (лист дерева) и фоточувствительным веществом, нанесенным на металлическую пластинку. Изображение на фотопластинке появилось лишь в тех местах, где прохождению света не препятствовала тюлевая сетка. Протравив затем фотопластинку кислотой, он получил рельеф, испещренный тонкими штрихами, глубина которых варьировалась в зависимости от плотности изображения и временем воздействия кислоты.
Таким образом, Телбот изобрел полиграфический растр и в то же время открыл путь к новому направлению в глубокой печати: ротогравюре.
Растр сделал возможным создание воспроизведение всего диапазона тонов фотоизображения такими методами, как высокая печать и литография.

Гравюра и ротогравюра (около 1890 года)

Применение ротации в глубокой печати требовало технологии гравирования бесконечного количества маленьких ячеек, причем непосредственно на формном цилиндре. Этот создавало определенные трудности: использование резинового скребка для снятия лишней краски исключало использование изогнутой металлической пластины-формы (она не могла идеально прилегать к поверхности формного цилиндра), а нанести фоточувствительный слой на сам цилиндр было невозможно.
Однако, в 1862 году англичанин Дж.В.Сван изобрел углеродную ткань - бумагу, покрытую слоем желатина, которую можно было сделать светочувствительной, проэкспонировать, а затем приклеить к металлической поверхности любой формы.
В 1876 году чех Карл Клич придумал способ нанести растровую сетку прямо на углеродную бумагу, а затем использовать ее для переноса ячеек, необходимых для глубокой печати, на формный цилиндр одновременно с изображением. В 1895 году Клич вместе с английскими коллегами основал «Компанию Глубокой Печати Рембрандт», которая печатала репродукции картин методом ротогравюры. Технология процесса при этом держалась в глубочайшей тайне.
Почти одновременно в Германии и США был запатентован несколько иной процесс, при котором изображение сперва растрировалось, а уже потом переносилось на углеродную ткань. Но это не сыграло никакой роли: в 1903 году один из печатников «Компании Глубокой Печати Рембрандт» эмигрировал в США и там раскрыл секрет Клича. Его метод быстро распространился по всему миру.

XX век - век полиграфии

В XX веке развитие печатного дела происходило в направлении скорости, производительности и экономичности печати. Начало этого процесса было положено созданием метода офсетной печати.

Изобретение офсетной печати (начало XX века)

К началу XX века литографский процесс был значительно усовершенствован. После создания первого механического печатного пресса литография развивалась по двум направлениям.
Первым из них была печать на тонких металлических листах (и прежде всего, на жести, их которой делались консервные банки) с использованием процесса переноса, изобретенного в 1878 году. Смысл его заключался в том, что печатный цилиндр, несущий на себе лист жести, соприкасался не с литографским камнем, а с промежуточным цилиндром, покрытым резиной, так называемым печатным полотном. Полотно принимало на себя краску с камня и переносило ее на жесть.
Вторым направлением, несколько потерявшим актуальность к концу XIX века, была печать на бумаге, на цилиндровых или ротационных машинах.
В 1904 году в Натли, штат Нью-Джерси, печатник Айра В. Рюбель неожиданно обнаружил, что изображение, случайно оказавшееся не на бумаге, а на резиновом полотне печатного цилиндра (бумага замялась при подаче), само пригодно для печати и, более того, дает оттиск превосходного качества. Рюбель с помощниками сконструировали трехцилиндровую печатную машину - первую в истории офсетную машину.

Сухой офсет (1920 год)

Изобретение сухого офсета связано с необходимостью запечатывать фон банковских квитанций краской на водной основе, с целью защиты от подделок. Было предложено следующее решение: заменить литографскую форму формой высокой печати, объединив не требующую увлажнения высокую печать с офсетным переносом краски. Этот процесс и назвали «сухим офсетом». Он широко применяется и в наши дни.
В 1950 году был предложен другой технологический процесс (он особенно широко применяется в США). Согласно этой технологии, совместно с офсетным переносом краски используется ротогравюра. Таким способом печатаются обои, наносится изображение на линолеум, бумажную посуду и другие товары.


Цветная печать

Многоцветная печать появилась практически одновременно с изобретением собственно книгопечатания. Еще в Псалтыре 1457 года, подписанном Шаффером (некоторые приписывают эту работу Гутенбергу) орнаментальные буквицы были напечатаны в два цвета. Достигалось это при помощи двух деревянных блоков-литер, которые вставлялись друг в друга и смазывались разными красками.
В течение XVI века в Германии проводилось множество экспериментов по воспроизведению при печати нескольких цветов. В XVII веке это делалось следующим образом: на различные части гравированной металлической формы наносились краски различных цветов, а затем изображение печаталось как обычно. В 1719 году живописец Жак-Кристоф Ле Блон запатентовал в Англии печатный процесс, использующий для воспроизведения цветного изображения три основных краски: голубую, желтую и красную; черная краска использовалась для печати контуров изображения. С помощью нанесенной на исходное изображение плотной сетки изобретатель гравировал четыре металлические формы и последовательно производил четыре оттиска, каждый - своим цветом.
В XIX веке открытие трихроматизма, создание фундаментальной теории трехцветного анализа и синтеза цветов в фотографии, появление технологии производства покрытий, чувствительных к тому или иному цвету, и, наконец, изобретение растра, заменившего примитивную сетку Ле Блона, - все это привело к зарождению современной триадной техники цветной печати, включающей в себя, с учетом черного, четыре основных цвета.

Автоматизация набора (после 1929 года)

В стремлении повысить скорость и эффективность печатных процессов, полиграфисты неизбежно сталкивались с необходимостью механизировать и даже автоматизировать набор.
Один из подходов к решению этой проблемы был реализован в Монотипе. В этом устройстве была впервые применена идея разделения клавиатуры и отлива. Несколько операторов, изготавливающих несколько перфолент одновременно, могли заставить буквоотливной механизм, управляемый этими перфолентами, работать с максимальной скоростью.
Совершенствование телетайпного оборудования в США позволило к 1929 году создать оборудование, полностью использующее принцип разделения функций человека и машины. Оператор изготавливал перфоленту, на которой каждый символ был представлен комбинацией отверстий, затем лента заряжалась в транслирующее устройство, которое управляло отливом целых строк. Такие машины могли работать со скоростью более 20 тысяч знаков в час.

Программируемый набор (50-е годы)

Изготовление перфоленты оставалось относительно медленным процессом, прежде всего потому, что оператору приходилось самому решать, где и в каком слове в конце строки ставить перенос. Развитие электроники во второй половине прошлого века позволило автоматизировать принятие этих решений.
В 50-е годы во Франции была создана BBR - первая система программного набора. Оператор по-прежнему изготавливал перфоленту, но задачи определения длины строки, расстановкой переносов в соответствии с правилами грамматики, исправления орфографических ошибок и даже воспроизведения текста на основе шаблона верстки - все это брал на себя компьютер. Устройством вывода для компьютера служил перфоратор, и производительность системы ограничивалась исключительно скоростью его работы. BBR достигала ошеломляющей скорости в 300 тысяч знаков в час, что более чем в десять раз превосходило скорость самых передовых строкоотливных машин.
В 60-е годы перфоленту заменила магнитная лента, что позволило поднять скорость до еще более невероятной величины - 1000 символов в секунду, или 3.6 миллиона символов в час! Хотя такая производительность и бесполезна для механических композеров, отливающих буквы или строки из свинца, она приобретает важнейшее значение для устройств, не обремененных тяжестью свинца и ограничениями, налагаемыми конструкцией механических узлов.


Появление фотонаборных автоматов

Использование в офсетной или высокой печати тяжелого и неудобного во многих отношениях свинца чрезвычайно непрактично. Идея машины, создающей фотоматрицу заголовков, появилась еще во второй половине XIX века. В 1915 году была построена машина Fotoline, которая собирала строку заголовка из отпечатков отдельных букв на прозрачной пленке.

Первое поколение фотонаборов - механические

Для дальнейшей реализации этого подхода потребовалась переделка существующих строкоотливных машин. Металлические матрицы были заменены изображениями букв, а отливной механизм - фотоаппаратом.
Первым в ряду подобных машин был фотонабор Fotosetter (1947 год). В 1963 году появился его модернизированный вариант Fotomatic. Оба устройства управлялись с помощью бумажной перфоленты, и оба были сконструированы на основе строкоотливной машины Intertype. Фотонаборная машина Linofilm (1950 год) была создана на основе Линотайпа, а машина Monophoto (1957 год) - на основе Монотайпа.
Хотя все эти машины не имели дела со свинцом, их производительность принципиально не отличалась от их строкоотливных собратьев. Нужен была новый подход, позволяющий переосмыслить фотонабор с функциональной стороны.
Впервые этот подход был реализован в Германии в 20-х годах прошлого века. Фотонабор Uher содержал вращающиеся диски, к которым были прикреплены фотоматрицы.


Второе поколение фотонаборов - функциональные

Это поколение характеризовалось стремлением избавиться от ограничивающих скорость механических частей. Количество движущихся частей сократилось до двух: вращающийся диск или барабан с фотоматрицами и система стеклянных призм или зеркал, придающих лучу света нужное направление.
Первым подобным устройством стал Limitype, изобретенный в 1949 году двумя французами - Рене Хигоне и Луи Мойру. Первая модель этого фотонабора имела клавиатуру; в дальнейшем клавиатура стала независимым блоком. Скорость работы машины превышала 28 тысяч символов в час.
В 1954 году был создан Linofilm, электронное устройство, где матрицы менялись движением сегментов фотозатвора. Его скорость достигала 12 символов в секунду, или более 43 тысяч в час. В 1965 году в конструкцию машины был добавлен барабан, что удвоило производительность. Но дальнейшее увеличение скорости при такой конструкции было невозможным из-за большой центробежной силы.
В конструкции системы Limizip 900 (1959 год) была применена очередная революционная идея - сделать единственной движущейся частью устройства линзу, которая за одно движение могла сканировать целую строк из 20 или даже 60 символов. С применением в качестве носителя информации магнитной ленты скорость работы системы достигла более 2 миллионов символов в час.
Первая книга, набранная с помощью Limizip в 1964 году, называлась "Index Medicus"; для эволюции фотонаборной технологии она значила примерно столько же, сколько значила Библия Гутенберга для эволюции всего книгопечатания. Более 600 страниц этой книги были набраны за 12 часов. На строкоотливной машине такая работа заняла бы целый год.
Третье поколение фотонаборов - электронные
Самые быстрые фотонаборы все еще отставали по скорости от магнитной ленты. В 60-х годах появились третье поколение фотонаборов, в которых вообще не было механических движущихся частей, как не было и световых лучей, управлять которыми без таких частей было бы невозможно.
Фотонаборы на основе электронно-лучевых трубок (ЭЛТ, или CRT) (RCA, Linotron и т.д.) работают по тому же принципу, что и телевизор: тонкий пучок электронов проходит сквозь фотоматрицу буквы и вызывает модуляцию другого пучка электронов на люминисцентном экране, что, в свою очередь, оставляет изображение на фотопленке. Производительность таких устройств приближается к 1000 символов в секунду, что составляет более 3 миллионов в час.
Созданный в Германии в 1965 году Digiset стал первым в мире фотонабором, в котором вообще отсутствовали матрицы. Вместо этого двоичное представление символов было записано в его магнитной памяти. Фотонаборы этого типа (их стали называть алфавитно-цифровыми) имеют теоретическую скорость более 3 тысяч символов в секунду, или более 10 миллионов в час. Однако такая скорость превышает возможности магнитной ленты, и значит, для достижения максимальной эффективности, такой фотонабор необходимо подключить напрямую к компьютеру с соответствующей скоростью передачи данных.


На пути к цифровой печати

Когда производительность фотонаборов вплотную приблизилась к скорости печати печатных машин, возникла вполне очевидная идея - вообще избавиться от печатной машины. В самом деле, зачем она нужна, если фотонабор способен печатать столько же страниц за единицу времени, сколько и сама машина? Достаточно лишь заменить фотографическую пленку недорогим носителем, на который будет возможно наносить изображения без применения давления.
К этому времени существовали разработки различных методов печати, которые не использовали давление. В 1923 году появилась электростатическая печатная система, в которой краска переносилась с цилиндрической формы на бумагу с помощью электрических зарядов. В 1948 году в Америке была создана альтернативная методика электростатической печати, в которых на бумагу наносилась не краска, а порошок, чувствительный к воздействию электричества. Эта техника положила начало ксерокопированию для офисного применения и, в промышленной печати, ксерографии - для печати постеров и карт.
Печать без давления стала возможна и при использовании специальной бумаги с фоточувствительным покрытием, которая экспонировалась с помощью электронного луча фотонабора. Первый эксперимент с использованием подобного факсимильного процесса был проведен в 1964 году в типографии японской газеты «Майниси симбун». Изображение газетной страницы, сформированной на электронно-лучевой трубке, было передано с помощью радиоволн, как в телевидении. Окончательное изображение было получено с использованием электростатической печати.

Трафаретная печать и коллотипия

Параллельно эволюции трех основных печатных процессов - офсетной, высокой и глубокой печати - развивались и другие технологии печати. Эта эволюция привела к тому, что в течение XX века некоторые из этих технологии получили широкое распространение в печатном деле.
Способ воспроизведения изображения путем продавливания краски через сетчатую шелковую ткань, определенные области которой закрыты маской-шаблоном (шелкография, или трафаретная печать), использовался в Китае и Японии задолго до изоюретения печатного пресса. В XIX веке лионские текстильщики начали использовать эту технологию для печати на ткани. Начиная с 30-х годов прошлого века, трафаретная печать используется для печати на самых различных материалах (стекло, дерево, пластик) и даже на разлиных поверхностях (например, на круглых и цилиндрических объектах). Это еще одни пример превращения ручного ремесла в промышленную технологию, использующую фотографические методы для производства сеток и высокопроизводительные автоматические машины.
Еще один метод печати был запатентован во Франции в 1855 году под названием «фотоколлотипия» и модифицирован также во Франции в 1865 году (при этом название изменилось на «фототипия»), а затем а 1868 году в Германии под именем «альбертипия». Этот процесс использует фоточувствительное вещество не как агенты при производстве форм для печати, а как покрытие самих этих форм. Эта техника получила широкое распространение между 1880 и 1914 годами под названием «коллотипия». Затем она была забыта, и лишь спустя полвека начала применяться снова (на этот раз в усовершенствованном и механизированном виде) для печати черно-белого изображения на прозрачных и непрозрачных носителях.


Флексография

Флексография - это технология ротационной высокой печати с применением гибких резиновых форм. Она занимает в печатном деле особое место из-за используемых в этом процессе жидких красок.
Флексография была впервые запатентована в Англии в 1890 году и усовершенствована в Штрасбурге несколько лет спустя.
Флексографская печать особенно хорошо подходит для нанесения изображения на относительно грубые и невпитывающие поверхности (толстый картон, упаковочная бумага, пластмассовая или металлическая пленка). Она также широко применяется в газетной и журнальной печати, главным образом на ротационных машинах.
Голографическая печать
В 60-е годы прошлого века была разработана технология голографической, или «объемной», печати. Суть ее - в наличии двух вариантов одного плоского изображения, напечатанных с некоторым сдвигом на обеих плоскостях относительно толстой прозрачной пластинки, испещренной очень тонкими параллельными полосками. Благодаря этим полоскам, каждый глаз человека, смотрящий на отпечаток с определенного угла, видит только одно изображение. Иллюзия «трехмерности» появляется, когда мозг интерпретирует изображения, видимые обоими глазами, совмещая их друг с другом.

Офисная полиграфия

Развитие промышленности и частного предпринимательства в XIX и XX веке потребовало новых подходов к производству печатной продукции. В области офисной печати первым средством воспроизведения текста стала печатная машинка, изобретенная в 1867 году. Позже появились машины, способные репродуцировать любые количества страниц машинописного текста, а впоследствии, вообще любые изображения. Некоторые из этих устройств были основаны на технологиях, схожих с методами обычной печати, другие использовали оригинальные процессы.
В 1881 году в Англии появился так называемый «шаблонный дупликатор», основанный на технологии трафаретной печати. В 1900 году во Франции была создана фотокопировальная машина, положившая начало факсимильной печати. Были попытки использовать в офисной полиграфии и несколько упрощенные методы офсетной печати. Некоторые из предложенных в таких офсетных минидупликаторах технологических решений позже были применены и в «большом» офсете.
Разработанная в 1938 году техника электростатической печати, названная «ксерокопированием», также получила широкое применение в офисной полиграфии.
Все описанные процессы копирования и воспроизведения документов были объединены в общее понятие «репрографии». Это название было предложено на первом конгрессе, посвященном офисной полиграфии, который прошел в Колоне в 1963 году. Когда речь заходит о печати относительно небольшого количества копий, репрография становится серьезным конкурентом обычной печати.

  • Вместо введения
  • Часть первая, в которой рассказывается о рождении книги и ее первых шагах и свершениях
    • Создание письма - сложный и длительный процесс, продолжавшийся много столетий. Ученые до сих пор спорят о том, как протекал этот процесс.
    • Кипу и вампум
    • Письмо юкагирской девушки
    • Иероглифы
    • Миф о финикянине Кадме
    • Великие славянские просветители
    • Основа книги
    • Александрийская библиотека
    • От свитка - к кодексу
    • Библиофилы и библиополы
    • В византийском скриптории
    • Палимпсесты
    • «Шелк Цая»
    • «Не умеющий писать не может оценить такую работу»
    • На острове Рейхенау
    • «Времена года» - братьев Лимбургов
    • «Филобиблон»
    • Первая русская книга
    • «Изборники»
    • «Не лепо ли ны бяшет, братие...»
    • В библиотеке Троице-Сергиева монастыря
  • Часть вторая, повествующая об изобретении книгопечатания, а также о том, как типографский станок проник во все страны Европы
    • Кто изобрел книгопечатание?
    • О египетских скарабеях и печатных пряниках
    • От штампов - к печатям
    • Набивные ткани
    • Китайские книги
    • В «пещерах тысячи Будд»
    • Ксилографические книги
    • Детские кубики
    • Основа книгопечатания
    • Диск из Феста
    • Послание Ивана Смерда
    • Человек в бумажной одежде
    • Лауренс Костер и другие...
    • Иоганн Гутенберг
    • Что изобрел Иоганн Гутенберг?
    • «Самый мощный рычаг...»
    • В книгу приходит гравюра
    • Басни Эзопа
    • Первые итальянские...
    • В солнечной Венеции
    • Типограф-экспериментатор
    • Гравюра на металле
    • Об Израэле ван Мекенеме и Феодосии Изографе
    • «...Первый поэт нового времени»
    • Первые французские...
    • «Книга хроник и историй с иллюстрациями от начала мира и до нашего времени»
    • Великий мастер гравюры
    • «Себе и друзьям»
    • Император-библиофил
    • «Крепкая вода»
    • «...Философ добре хитр, имя ему Альдус, а прозвище Мануциус...»
    • «В нем зародыш всех революций»
    • Что читали в XVI веке?
    • Отшельник под деревом
    • Дом Плантена
  • Часть третья, в котором пойдет речь о начале книгопечатания у славян и о том, как типографский станок утвердился в России
    • Мастер на все руки
    • Монах Макарий из Черной горы
    • Подвиг доктора Скорины
    • Самые первые
    • Великий просветитель
    • Труды и дни Анисима Радишевского
    • От ремесленной мастерской - к мануфактуре
    • «Азбучного дела подьячий»
    • «Учение и хитрость...»
    • Мастер Симон Гутовский
  • Часть четвертая, повествующая о голландских издателях Эльзевирах, о реформах Петра I, а также о первых газетах и журналах
    • История титульного листа
    • Прославленная династия
    • От Галилея до Ньютона
    • Корабли мысли
    • «Авизо», «реляции», «куранты»
    • Первые журналы
    • Три «Букваря» и одна «Арифметика»
    • Первая русская газета
    • «Сими литеры печатать...»
    • «Манифактурные книги»
    • «Юности честное зерцало»
    • «Примечания в ведомостях» и «Комментарии»
  • Часть пятая, рассказывающая об изобретениях, которые помогли книге сделаться произведением высокого искусства
    • От Ньютона до Лавуазье и от Беркли до Канта
    • Из Фернейского замка - в Петербург
    • Поговорим об энциклопедиях
    • «Они работают, а вы их труд ядите»
    • «Наивеличайшее изо всех изобретений...»
    • «Все те книги без изъятия сжечь...»
    • Искусство книги
    • Семейство шрифтов
    • «Король печатников и печатник королей»
    • Иллюстрация
    • Изобретения Людвига фон Зигена и Жана Батиста Лепренса
    • «Он... был первым нашим университетом»
    • Великое обилие красок
    • Век рококо
    • Торцовая гравюра Томаса Бьюика
    • «Каменная печать»
    • «Мое сердце полно будущего»
    • Удивительная«История Жиль Блаза»
    • Успехи литографии
    • «Для немногих» и «Волшебный фонарь»
    • Кто такой В. Окергиескел?
    • «Он явил первый в России опыт печатания красками»
  • Часть шестая, рассказывающая о книгах и об издателях начала XIX века, а также о том, как в типографиях появились машины
    • Время больших перемен
    • «Тот механизм, которому... мы обязаны прекрасными изданиями»
    • Матрица и стереотип
    • Патент Уильяма Никольсона
    • Книгопечатная машина
    • Стопцилиндровые и двухоборотные
    • «Мамонт» в типографии «Таймс»
    • «Точно жилище волшебника…»
    • И снова плоскость...
    • Любитель «Душеньки»
    • Создатель Румянценского музеума
    • «Полярная звезда», «Звездочка»...
    • «Произвел решительный переворот в русской книжной торговле»
    • «Настал иллюстрированный в литературе век»
    • Фирмы, фирмы, фирмы...
    • «Призрак бродит по Европе»
  • Часть седьмая, повествующая о фототехнике, позволившей насытить книги, газеты и журналы иллюстрациями
    • Гелиографии
    • Удачливый живописец
    • Негатив и позитив
    • Изобретательный художник Алексей Греков
    • Фотография в книге
    • Чудесные свойства хромированного желатина
    • Изобретение профессора Гусника
    • Лауреат Ломоносовской премии
    • Меняя тональность краски...
    • Иллюстрированные журналы
    • Офорт наоборот
    • Используя несовершенства человеческого глаза
    • «В натуральных цветах»
  • Часть восьмая, которая познакомит читателя с промышленным переворотом в книжном деле
    • Промышленная революция
    • Механические наборщики
    • Автомат-наборщик
    • Изобретатель Иосиф Ливчак
    • Линотип Оттмара Мергенталера
    • Машины-брошюровщики
    • Машины-переплетчики
    • Способ «фото-тинто»
    • Орловская печать
    • Печать с переносом
    • Изобретение 18-летнего юноши
  • Часть девятая, повествующая о книге и издателях второй половины XIX века
    • Время противоречий
    • «На книжном посту»
    • Величайший иллюстратор XIX века
    • Издатель «Нивы»
    • «Это настоящее народное дело»
    • «Назад к Рафаэлю!»
    • Комбинация линий и пятен
  • Часть десятая, рассказывающая об огромной роли печатного слова в освободительном движении
    • Он создал вольную русскую прессу за границей
    • Герои вольного слова
    • «Самым страшный снаряд который когда-либо был пущен в голову буржуа»
    • Первый перевод «Капитала»
    • Библиотека Маркса и Энгельса
    • «Благо революции - высший закон»
    • Время бесцензурных листков
    • Первая типография
    • «Типографская аккуратность и изящность издания очень важны»
    • Ленинская «Искра»

Основа книгопечатания

Сегодня не так просто найти типографию, в которой бы наборный процесс осуществлялся по старинке - вручную. В такой типографии рядами стоят высокие столы с наклонно расположенными верхними досками. На столах - деревянные ящики. разделенные перегородками. Это наборные кассы. В каждой из них - 96 небольших отделений гнезд.

В отделениях кассы находятся литеры - металлические брусочки, отлитые из гарта - сплава свинца, олова и сурьмы. На торце литеры рельефное зеркальное изображение буквы. Как и в детских кубиках, каждая литера несет изображение лишь одной буквы. Литеры с одинаковыми знаками хранятся в одном отделении кассы. Но в русском алфавите лишь 32 буквы. Для чего же тогда 95 гнезд?

32 строчные буквы, но мы забыли про прописные, а ведь и им нужно найти место в кассе. Кроме того, специальные отделения предназначены для цифр, для знаков препинания, а также для металлических брусочков, не имеющих знаков, шпаций, которые при наборе вставляют между словами. Все эти литеры в совокупности называются шрифтом. Человек, стоящий перед кассой,- наборщик - держит в левой руке большой металлический ящичек с тремя стенками, одна из которых сделана подвижной. Это - верстатка. Работу наборщика можно уподобить действиям ребенка, составляющего слова из детских кубиков. По одной литере вынимает он из кассы и устанавливает в верстатку. Так образуются слоги, слова, фразы... Подвижную стенку верстатки предварительно закрепляют таким образом, чтобы все строки получались одинаковой, заранее определенной длины. До нужной длины строки доводят, устанавливая в пробелы между словами шпации различной ширины. Этот процесс называется выключкой.

Составленные из отдельных литер строки вынимают из верстатки и устанавливают в специальной раме. Так постепенно складывается печатная форма зеркальное и рельефное изображение одной или нескольких страниц книги, журнала, газеты... Остается лишь нанести на форму краску, наложить сверху лист бумаги и плотно прижать его к поверхности набора. Снимем лист оттиск готов.

Форма, с которой печатали ксилографические книги, была цельной. Та же, с которой мы познакомились сейчас, составлена из отдельных элементов литер.

Далеко не всякое новшество можно оправдать. К набору и цельной печатной форме это не относится. Здесь четко можно привести многие «за» и почти ни одного «против». «За» и «против», проверенные пятисотлетней практикой. Пересказывать все доводы мы не будем. История давно подвела баланс и решила спор в пользу наборной формы. Забегая вперед, скажем, что решение это оказалось справедливым лишь на ранних этапах развития книгопечатания; в XIX в. оно было пересмотрено. Появились машины, которые изготавливали печатные формы, составленные из цельных строк.

Так вот, из многих «за» приведем лишь два - главнейших.

Процесс изготовления рельефной печатной формы весьма трудоемок. Зеркальную копию будущей страницы гравер ксилографической книги получал в результате нескольких месяцев напряженной работы. Изготовление книги затягивалось на долгие годы.

Можно было бы ускорить процесс, если бы удалось предварительно заготовить элементы печатной формы. Если форма цельная это невозможно. Но если она составлена из отдельных литер, вопрос решается просто. Заранее сделанные литеры хранятся в типографии. При необходимости из них, как из детских кубиков, составляют печатные формы. Наносят на них краску, печатают листы книги, а затем снова разбирают литеры по отделениям кассы. Теперь свинцовыми буквами можно набирать новые тексты, печатать другие книги.

Одни и те же литеры в различных комбинациях участвуют в изготовлении многих книг.

Процесс изготовления печатной формы отныне сводится к набору. Гравировать знаки на металле или дереве не приходится. А значит, форма может быть изготовлена быстро, в течение сравнительно короткого промежутка времени. В этом великое преимущество наборной формы по сравнению с цельной, ксилографической.

В процессе однообразной и утомительной работы, когда от мелких значков рябит в глазах и голова становится свинцовой от усталости, граверу, режущему цельную форму, легко напутать. А это значит, что многие недели пропали даром и всю работу нужно начинать сначала.

Наборщик тоже ошибается. На страницу падает с добрый десяток неправильно поставленных литер. Но исправить ошибку легко. Нужно лишь взять шило, поддеть случайно попавшую в форму литеру и заменить ее верной. Исправление, или, как говорят полиграфисты, корректура, наборной формы производится быстро. В этом второе великое преимущество набора.

Принцип набора отдельных шрифтовых знаков лежит в основе современного книгопечатания. Мы уже знаем, что существовал он задолго до того, как книгопечатание было изобретено.

наборный шрифт штучная печать типография

В 1438 году Иоганн Гутенберг сделал первые оттиски с наборных литер. По существу, Гутенберг пошел по пути создателей алфавитов: ведь набор букв-литер позволяет зафиксировать на бумаге все звуки речи на данном языке, причем не один раз, а многократно. Гутенберг на подготовку первого печатного набора Библии потратил около двух лет. Но зато после этого он смог сразу напечатать целый ее тираж. Он создал первое типографское оборудование, изобрел новый способ изготовления шрифта и сделал словолитную форму. Из твердого металла делались штампы (пунсоны), вырезанные в зеркальном изображении. Затем они вдавливались в мягкую и податливую медную пластину: получалась матрица, которая заливалась сплавом металлов. Сущность этого способа изготовления букв состояла в том, что их можно было отливать в каком угодно количестве. В производстве книги это имеет существенное значение, если учесть, что для одной средней книжной страницы требуется примерно двести букв. Для оборудования типографии требовался уже не пресс, а печатный станок и наборная касса (наклонный деревянный ящик с ячейками). В них помещались буквы и знаки препинания. Иоганн Гутенберг построил такой печатный станок. Очень вероятно, что техника Гутенберга отличалось от современной, но чем именно, определить невозможно.

Изобретённый Гутенбергом новый способ печатания книг не мог долго содержаться в тайне. Уже в 1460 г. Ментель имел типографию в Страсбурге, Пфистер -- в 1461 г. в Бамберге. После взятия Майнца герцогом Нассауским, когда типография Шеффера и Фуста была уничтожена, работники, или, как их называли, «дети Гутенберга», разбежались во все стороны и разнесли с собой и типографское искусство. В Кёльне Ульрих Целль работал уже в 1466 г.; за ним следуют Базель, с 1471 г.; Аугсбург, где Гюнгер Цайнер работал с 1468 г.; Ульм -- с 1469 г.; Нюрнберг -- Генр. Кеффер и Иог. Зензеншмидт, с 1470 г. Для северной Германии раньше всего была основана типография во Франкфурте-на-Майне, а затем в Любеке, Лейпциге, Эрфурте и др. В Вене первая типография открылась в 1482 г., но постоянная -- лишь в 1491 г. В общем, к концу XV век в Германии было свыше 50 типографий, а печатников -- свыше 200. Из Германии новое искусство распространилось по другим странам.

Вторая половина XV века была временем триумфального шествия книгопечатания. К 1500 г. в Европе было издано более десяти миллионов экземпляров книг, в том числе и на славянском языке. Особенную известность получил Этьенн в Париже: его издания благодаря красивым буквам, качеству бумаги и чернил, изяществу и богатству орнаментных рисунков доставили ему выдающееся место в ряду других современных издателей.

В Антверпене жил знаменитый печатник Христофор Плантен, основавший типографию в 1555 г. По поручению Филиппа II он напечатал Библию, на латинском, греческом, еврейском, сирийском и халдейском языках (1569--1573). Плантен был монопольным издателем церковных книг для всех испанских владений; он издал 60 тыс. молитвенников, 100 тыс. требников и 400 тыс. часословов, а всего до 1500 изданий; он стал родоначальником целой династии печатников, Плантенов-Моретов.

В 15 веке влияние книгопечатания на политическую, культурную и социальную жизнь общества было еще не слишком значительным, оно заметно усилилось в 16-17в. Самое большое распространение печатное слово получило в эпоху Реформации и Крестьянской войны в Германии. Эту эпоху можно считать временем печатного листка-прокламации. В типографской продукции, на книжном рынке доминировала публицистика. Прокламации, листовки, памфлеты и т.п. заполнили книжный рынок. Солидные фолианты, если их содержание отвечало духовным потребностям времени, также получали большое распространение.

В середине XVI в. книгопечатание проникает в Московское государство. Введение книгопечатания в Москве - результат социально-экономического развития феодального общества Руси XVI в. Развитие производства и ремесла создавало необходимые технические предпосылки для учреждения в Москве типографии и перехода от рукописного способа размножения книг к более совершенному и производительному - книгопечатанию.

В 1798 году Алоиз Зенефельд изобрел литографию - способ плоской печати, при котором печатной формой служит поверхность камня (известняка). Изображение на литографский камень наносят жирной литографской тушью или литографским карандашом. Литография, допускающая широкое тиражирование, в XIX веке получила распространение в графике. В ХХ веке литография вытесняется из полиграфии офсетом, но сохранила значение для выполнения художественных гравюр - эстампов.

В 1810-1812 годах Фридрих Кенинг (1774-1833) изобрел скоропечатную машину с металлическим цилиндром, давящим на плоскую наборную форму, которая совершала возвратно-поступательные движения. На такой плоскопечатной машине можно было печатать до 1000 оттисков в час с обеих сторон листа. При этом формат листа можно было увеличить и расположить на нем сразу 6 или 12 страниц. Наборная форма смазывалась типографской краской, затем на нее помещали чистый лист бумаги, по которому прокатывали металлический цилиндр, оттискивавший на ней отпечаток. При этом цилиндр соприкасался с листом бумаги только по образующей поверхности, представляющей собой прямую линию. Это позволило значительно уменьшить усилие давления на бумагу, в отличие от винтового пресса, в котором давление приходилось осуществлять сразу по всей площади бумажного листа. Во всех последующих печатных машинах давление на бумагу осуществляется только с помощью цилиндра.

В 1865 году была изобретена ротационная печатная машина, в которой печатная форма размещается на непрерывно вращающемся цилиндре. Ротация во много раз ускоряет процесс печати. Бумага подается в ротационную машину либо последовательно отдельными листами (в так называемых листовых ротациях), либо непрерывно с катушки - роля (в так называемых ролевых ротациях).

Со времени изобретения книгопечатания до конца XX века его основные процессы оставались неизменными. Для получения оттисков необходимо было иметь печатную форму, материал для печатания (чаще всего бумагу) и печатную краску. Без печатной формы невозможно было напечатать целый тираж книг, журналов или газет.

Малопроизводительный и дорогой ручной набор просуществовал почти до конца ХIХ века. В 1886 году О. Мергенталер изобрел наборную машину-линотип, дававшую набор в виде отдельных отлитых строк. А в 1892 году Т. Ланстон изобрел монотип, на котором набирается отдельно каждая буква-литера. Обе эти машины были машинами горячего набора. Лишь к концу XX века горячий набор был вытеснен сначала так называемым фотонабором, а затем и электронным набором.

Идея фотографического набора выдвинута в 1894 г. венгерским изобретателем Е. Порцельтом. Первую фотонаборную машину построил в 1895 г. В. А. Гассиев.

XX век стал в книгопечатании периодом перехода от машин, механизирующих отдельные производственные операции, к автоматизированным поточным линиям. В начале века полиграфические машины переводятся на электрический привод. В 30-40-х гг. появляются электрические контрольно-блокирующие и измерительные устройства. В 50-60-х гг. в книгопечатании начинает применяться электроника.

Успехи современной электроники, электрофотографии и цифровой вычислительной техники позволили коренным образом усовершенствовать все процессы полиграфического производства. Появление персонального компьютера коренным образом упростило и ускорило все эти процессы.

Таким образом, на наших глазах происходит постепенный отказ от бумаги - носителя информации, прослужившего человечеству тысячи лет. А ведь бумага - это лес, и хотя бы частичное уменьшение ее массового производства и применения приведет к улучшению экологии на нашей многострадальной планете.

Контрольная работа по теме «Книги - мои друзья»

1. Запишите пословицы и поговорки о книге, которые вам особенно понравились.

____________________________________________________________________________

____________________________________________________________________________

Если прилежно поищешь в книгах мудрости,

то найдёшь великую пользу душе своей.

Владимир Мономах

Что имеете хорошего, то не забывайте,

а чего не имеете, тому учитесь.

Гордости не имейте в сердце своём.

Ярослав Мудрый

Старых чтите как отца, а молодых — как братьев.

3. Допишите предложения:

Первая книга была напечатана по приказу царя ________________________ и называлась ______________________________ . Первая печатная книга была оформлена в ________________________ переплёте, украшена _____________________

Первопечатник Иван____________, напечатал первую книгу «________________» в___________году по приказу царя ______________. Книга печаталась в________________________ . На её изготовление ушло________________________ .

4. Допишите предложение:

Музей книги — это ________________________________________________________

5. Используя приобретённые знания, внесите изменения в рассказ Вани так, чтобы получился текст именно о Музее книги.

«… там было много занимательного, например такие штучки, из которых листы получаются, разные детали и машины для их изготовления. В этом музее на стенах висят картины, в которых представлены сюжеты из разных сказок. Мне очень понравился музей, и я купил о нём диск».

6. Из предложенных пословиц выберите те, в содержании которых говорится о значимости учения:

Книга мала, а ума придала.

Не всякий, кто читает, в чтении силу знает.

Книги читай, а дела не забывай.

Книги не говорят, а правду сказывают.

Книга хороша, да начётчики плохи.

Не красна книга письмом, а красна умом.

Книга в счастье украшает, а в несчастье утешает.

Кто знает аз да буки, тому и книги в руки.

Раздаточный материал для детей

Музей (дом Муз) — учреждение, которое занимается собиранием, изучением, хранением и экспонированием предметов — памятников естественной истории, материальной и духовной культуры, а также просветительской и популяризаторской деятельностью.

Экспонат — предмет, выставленный для обозрения на выставке.

Музейная экспозиция — выставление экспонатов музея.

Книга — один из древнейших предметов собирательства, который исследуют как объект письменной культуры.

Рукописные книги — это текст и иллюстрации, которые писали монахи от руки на пергаменте.

Музей книги — это учреждение, в котором совершается уникальное путешествие во времени, в результате чего изучается история развития книги: эволюция формы и материалов, технология книгопечатания, организация издательского дела, использование полиграфической техники.

Печатный станок XVII века — сооружение для изготовления книги, имеющее металлические и деревянные детали.

Наборный ящик — приспособление для хранения железных букв — литер.

Печатный станок XIX века — сооружение для изготовления книги, имеющее металлические детали.

__________________________________________________________________

Отзыв на прочитанную книгу по плану:

2. Название произведения.

3. Жанр (стихи, рассказ, повесть, сказка).

4. Тема произведения.

5. Имя любимого героя и ваше отношение к нему.

6. Новое для вас в этом произведении.

7. Полезное для вас в этом произведении (чему научились благодаря этому произведению).

_________________________________________________________________

Задание:

Выберите один из экспонатов, представленных в Музее книги, и расскажите о нём, используя план:

1. Название экспоната.

2. Название материала, из которого изготовлен экспонат.

3. Назначение этого экспоната в реальной жизни.

4. Путь экспоната в музей.

_____________________________________________________________________________

Задание :

Составьте по плану текст экскурсии по одному из залов Музея книги и проведите её.

1. Тема экспозиции этого зала.

2. Краткое представление экспонатов данного зала.

3. Возможное использование данных экспонатов в реальной жизни.

Направления

Книга Древней Руси

Современная книга

Материал для изготовления

Доступность

Ценность

Частота использования

Цель использования

Сравните современные книги и книги Древней Руси по следующим направлениям:

Направления

Книга Древней Руси

Современная книга

Материал для изготовления

Доступность

Ценность

Частота использования

Цель использования

Наука и техника

Печатать страницу

ПОЛИГРАФИЯ, техника многократного получения одинаковых изображений (оттисков) путем переноса красочного слоя с печатной формы на бумагу или другой материал. Собственно процесс переноса изображения с печатной формы на бумагу называется печатанием. Но это только один из процессов изготовления печатной продукции; основные процессы полиграфии – набор, изготовление печатной формы, печатание и брошюровочно-переплетные работы.

В полиграфии применяются три основных способа размножения текста и иллюстраций: высокая, глубокая и плоская печать. Высокая печать – самый старый из них. Как на то указывает само название, при таком способе печатающими являются рельефные элементы печатной формы, возвышающиеся над непечатающими (пробельными) элементами. Печатание осуществляется, когда печатающая поверхность, покрытая краской, прижимается к бумаге. При глубокой печати печатающие элементы печатной формы, наоборот, заглублены. Краска наносится на всю поверхность формы, а затем стирается так, что остается только в углублениях, соответствующих изображению. Когда к форме глубокой печати прижимается бумага, краска переходит из углублений на бумагу подобно влаге, впитываемой полотенцем. Печатающие и пробельные элементы формы плоской печати расположены на одном уровне. Этот метод, к которому относятся офсетная печать и литография, основан на различиях в смачиваемости разных участков поверхности. Поверхность формы химически обрабатывается так, что печатающие элементы смачиваются краской, а пробельные ее не принимают.

ВЫСОКАЯ ПЕЧАТЬ Производство всякой печатной продукции начинается с набора. Набор для высокой печати может выполняться ручным или машинным способом.

Ручной набор. Это самый старый вид набора. Для каждой буквы алфавита используется отдельная типографская литера. Литера представляет собой металлический брусок, на верхнем торце которого имеется рельефное изображение буквы. Из таких литер вручную составляют слова, фразы, абзацы и т.д.

Типографский шрифт изготовляют в виде отдельных литер разных размеров и гарнитур и поставляют в виде комплектов, содержащих все прописные и строчные буквы, цифры и знаки препинания одного размера и одной гарнитуры. Высота (кегль) шрифта измеряется в неметрических единицах – типографских пунктах. В России стандартный размер пункта равен 0,376 мм. При монотипном наборе в России пользуются англо-американским пунктом, равным 0,3528 мм (1/72 дюйма).

Машинный набор. Машинный набор выполняется, конечно, быстрее ручного. Существуют три основных вида наборных машин для высокой печати: строкоотливные, буквоотливные и крупнокегельные строкоотливные. Все они на самом деле не производят набор типографского шрифта, а отливают шрифт из расплавленного металла.

Строкоотливные наборные машины (линотипы и интертипы) набирают текст в виде монолитных металлических строк с рельефной печатающей поверхностью. Каждая такая машина состоит из клавиатуры, магазина и отливного и разборочного аппаратов. При нажатии клавиши с обозначением буквы из магазина выбирается металлическая матрица, которая служит литьевой формой соответствующей буквы. Из матриц составляются целые строки, которые затем механически переносятся в отливной аппарат. Здесь матрицы заливаются расплавленным металлом, и он быстро остужается. Отлитая строка выталкивается из машины, после чего разборочный механизм возвращает матрицы в магазин. Перед отливанием строки механически выполняется ее выключка, т.е. приведение к заданной длине при помощи пробельных пластинок – шпаций.

Буквоотливная наборная машина (монотип) состоит из клавиатурного и отливного аппаратов. При нажатии клавиши на бумажной ленте пробивается кодовая комбинация отверстий, соответствующая данной букве. В отливном аппарате, где имеются матрицы для всех букв, по бумажной ленте автоматически отливается набор.

В крупнокегельных строкоотливных машинах машинный набор сочетается с ручным. Собранные вручную строки из матриц вводятся в отливной аппарат, в котором отливается набор.

Быстрота выполнения – не единственное преимущество машинного набора перед ручным. Он еще и проще во многих отношениях. Например, набор, осуществленный машинным способом, и разбирается механически, а не вручную. Кроме того, поскольку при машинном наборе шрифт каждый раз отливается заново, отпадают трудности, связанные с постепенным износом шрифта.

Клише. Кроме текста, печать имеет дело с иллюстрациями. При высокой печати иллюстрации воспроизводятся с помощью специальных форм высокой печати – клише. Это твердые печатные формы, которые могут изготавливаться вручную, но чаще выполняются фотомеханическими и электромеханическими методами.

В зависимости от характера изображения клише могут быть штриховыми, полутоновыми и комбинированными. Штриховые клише, как на то указывает их название, применяются для воспроизведения рисунков, выполненных пером, рукописного текста, чертежей, графиков и других аналогичных оригиналов. При фотомеханическом методе изготовления воспроизводимую иллюстрацию фотографируют и полученный негатив помещают на металлическую пластину, покрытую растворимым в воде фоточувствительным материалом. Свет от мощной лампы, проходя через прозрачные участки негатива, вызывает задубление (затвердевание) покрытия. Покрытие же под непрозрачными участками негатива сохраняет растворимость в воде и вымывается, оставляя чистую металлическую поверхность. После этого всю поверхность пластины подвергают воздействию кислоты, но травление происходит только на участках, не защищенных задубленным покрытием, в результате чего и возникает необходимый рельеф.

Штриховые клише проще и дешевле других, но они пригодны только для воспроизведения иллюстраций, состоящих из линий и сплошных темных участков. Для передачи же фотоснимков, рисунков и других изображений, содержащих разные уровни серого цвета, применяются полутоновые клише.

Поскольку печатная машина может наносить лишь ровный слой краски, для передачи полутонов изображение на иллюстрации фотографическим методом разбивают на отдельные точки. Для этого на фотографическом этапе процесса на оригинал иллюстрации накладывается растр – оптический прибор с сеткой из непрозрачных черных линий. Растр разделяет изображение на точки, размер которых изменяется в зависимости от интенсивности воспроизводимого тона в том или ином месте. На темном участке изображения растр дает крупные темные точки, а на светлом – мелкие, более удаленные друг от друга. На основе полученного негатива изготовляется клише таким же способом, как и штриховые клише.

Комбинированные клише необходимы для воспроизведения иллюстраций, подобных, например, рисунку пером с наведенными тенями. В таких случаях используются элементы обоих указанных выше способов изготовления клише.

Верстка, спуск полос и заключка. После того как набраны текст и заголовки и изготовлены клише, все это должно быть скомпоновано в виде страницы. Эта операция, называемая версткой, состоит в том, что отдельные элементы набора устанавливают в положение, в котором они должны быть на оттиске. Затем вся печатная форма «заключается» (закрепляется) в массивной стальной раме, которая будет удерживать ее в нужном положении в процессе печатания.

Размеры рамы для заключки определяются числом и размером печатных форм, которые будут в ней закреплены. Если, например, для одной тетради нужно восемь полос (страниц), то печатник заключит четыре из восьми однополосных печатных форм в одной раме, а остальные четыре – в другой. С каждой из двух четырехполосных печатных форм будет сделан оттиск на разных сторонах одного листа бумаги. После однократного фальцевания (складывания) запечатанного листа по горизонтали и вертикали будет получено восемь полос. При многополосном печатании необходимо располагать отдельные печатные формы полос так, чтобы после печатания и фальцевания оттиски полос шли в тетради в нужном порядке. Такое расположение называется схемой спуска полос.

Стереотипия. При изготовлении многотиражной продукции формы высокой печати изнашиваются и их приходится восстанавливать. Кроме того, при одновременном печатании одного заказа на нескольких печатных машинах пришлось бы несколько раз выполнять один и тот же набор. Поэтому широко применяются копии печатных форм, так называемые стереотипы. Они дешевле, легче и быстрее изготавливаются, дольше служат и могут быть изогнуты для наложения на цилиндры ротационных печатных машин. Копии форм высокой печати изготавливают методами гальванопластики, литья и прессования.

При изготовлении гальваностереотипов под прессом делают отпечаток оригинальной формы на листе воска, пластика или свинца. Затем на отпечаток пульверизацией раствора наносят соединение серебра и помещают его в электролитическую ванну, где на поверхности отпечатка наращивается слой меди. Этот слой меди, закрепленный на толстой свинцовой подложке, и образует долговечную печатающую поверхность.

Литейный способ дает самые дешевые стереотипы. На оригинальную печатную форму накладывают тонкий (1 мм) лист многослойного картона и на прессе получают с нее матрицу. Затем матрицу металлизируют с поверхности путем пульверизации расплавленным металлом, который по остывании и образует копию печатающей поверхности.

Пластмассовые стереотипы можно изготавливать фотографическим методом или прессованием. В первом случае техника такая же, как и при фотомеханическом изготовлении клише, причем фоторепродукционным оригиналом служит оттиск оригинальной формы. Во втором – стереотип получают с матрицы (из материала с полимерной пропиткой) оригинальной формы методом прессования термопластичной пластмассы или резины.

Печатные машины. Машины для высокой печати делятся на три категории: тигельные, плоскопечатные и ротационные.

Тигельная машина. Тигельная машина имеет две щеки: талер, на котором закрепляется печатная форма, и тигель, удерживающий бумагу. Когда щеки раздвинуты, красочные валики накатывают краску на всю открытую поверхность формы. Затем щеки сдвигаются и тигель подается так, что бумага плотно прижимается к форме. При таком «натиске» краска переносится с формы на бумагу. Далее щеки раздвигаются и все повторяется с новым листом бумаги. У грейферной тигельной машины движутся и тигель, и талер, но такое устройство применяется только на машинах малого размера. У крупных тигельных машин талер неподвижен.

Плоскопечатная машина. Плоскопечатная машина (изобретенная раньше тигельной) названа так потому, что печатная форма в ней устанавливается на плоский талер. Тигель же, на который накладывается бумага, представляет собой печатный цилиндр. В процессе печатания талер перемещается в своей плоскости под действием вращающегося печатного цилиндра, а бумага зажимается между талером и цилиндром. По завершении печатания печатный цилиндр поднимается, запечатанный лист отделяется и красочные валики заново наносят краску на печатную форму.

Плоскопечатная машина может быть не только однокрасочной (описанной выше), но и двухкрасочной или двухсторонней. Двухкрасочная плоскопечатная машина действует так же, как и однокрасочная, с той разницей, что она агрегатирована из двух отдельных печатных секций, каждая со своими печатным цилиндром и красочным аппаратом. После того как напечатана одна форма, бумага переносится передаточным цилиндром ко второму печатному цилиндру для печатания со второй формы. Таким образом, бумага запечатывается дважды с одной стороны.

Двухсторонняя плоскопечатная машина, в отличие от описанных выше, запечатывает обе стороны бумаги за один проход. В конструктивном отношении она сходна с двухкрасочной плоскопечатной машиной, но не имеет передаточного цилиндра. После первого печатания бумага освобождается от захватов печатного цилиндра, переворачивается и захватывается вторым печатным цилиндром для печатания второй формы на другой стороне.

Ротационная машина. На ротационной печатной машине запечатываемая бумага проходит между цилиндрической печатной формой (формным цилиндром) и печатным цилиндром. Для такой машины требуется стереотип, которому можно было бы придать форму, соответствующую форме поверхности печатного цилиндра.

Ротационные печатные машины делятся на секционные и планетарные (с одним общим печатным цилиндром), а также на листовые и рулонные. Рулонные машины печатают на непрерывно подаваемом бумажном полотне, которое уже после печатания разрезается на отдельные листы. Производительность ротационных машин, как правило, выше, чем у плоскопечатных.

В секционной ротационной машине для каждого печатаемого цвета предусматриваются свои красочный аппарат, формный цилиндр и печатный цилиндр. Если, например, машина четырехкрасочная, то в нее входят четыре такие печатные секции. Бумага проходит все четыре секции последовательно.

В планетарной же ротационной машине вокруг одного общего печатного цилиндра расположено до пяти (по числу печатаемых цветов) красочных аппаратов и столько же формных цилиндров. Бумажное полотно, протягиваемое вращающимся печатным цилиндром, проходит от одного формного цилиндра к другому, и каждый из них дает свой оттиск до полного завершения цикла печатания.

ОФСЕТНАЯ ПЕЧАТЬ Процессы офсетной печати существенно отличаются от описанных выше процессов высокой печати. Если при высокой печати печатание осуществляется непосредственно с типографского шрифта и клише, то при офсетной печати необходимо фотографическое преобразование изображения набранного материала в прозрачное изображение на пленке. Выполненный шрифтовой набор сначала фотографируется. Затем полученный пленочный негатив используется как диапозитив для переноса изображения набора на формный материал, покрытый светочувствительным слоем.

Существуют три основных вида набора для офсетной печати: металлический набор, набор на наборно-пишущих машинках и фотонабор.

Набор металлический и на наборно-пишущих машинках. После того как машинным методом выполнен металлический набор текста, для получения фоторепродуцируемого оригинал-макета чаще всего используют репродуцируемый оттиск набора. Набор после постраничной верстки помещают на талер пробопечатного плоскопечатного станка. Полученный оттиск можно фотографировать как фоторепродуцируемый оригинал-макет.

Наборно-пишущие машинки – наиболее распространенная (из разработанных в прежние годы) техника получения фоторепродуцируемого оригинал-макета без металлического набора. Электрические пишущие машинки с типографским рисунком шрифта, в которых краска с красящей ленты переносится литерой на бумагу, дают оригиналы для репродуцирования в отраженном свете. Набор на наборно-пишущих машинках может сочетаться с фотонабором.

Фотонабор. Установки для фотонабора прошли путь от простейших ручных приборов для набора текстов полиграфического качества до автоматически управляемых устройств, обеспечивающих очень быструю переработку текстовых массивов.

Фотонабор основан на фотографическом процессе (с очень коротким временем экспонирования), при котором знаки по одному экспонируются на фотопленке или стабилизирующейся фотобумаге. Он может быть компьютеризован и требует оборудования двух видов: ленточного перфоратора с клавиатурой и фотонаборной машины, управляемой перфолентой.

Одна фотонаборная машина может работать с несколькими перфораторами. При нажатии клавиши перфоратор набивает на бумажной ленте кодовую комбинацию отверстий соответствующего типографского знака.

На фотонаборных установках с ручным обслуживанием выключку строк, т.е. подгонку их к заданной длине, выполняет оператор. Для этого он следит за показаниями счетчика, который регистрирует занятую и свободную части длины строки. Компьютеризованные же установки не требуют такой построчной выключки. Оператор полностью концентрирует свое внимание на непрерывно набираемом тексте, а информация с перфоленты вводится в компьютер с установленной в нем программой автоматической выключки до стандартного формата.

Современные фотонаборные машины – это скоростные устройства, конструкция которых позволяет использовать сразу несколько операторов, работающих параллельно на клавиатуре ленточных перфораторов. Принято разделять их на машины трех «поколений».

Машины первого поколения представляют собой простые фотомеханические устройства. Вводимая перфолента задает положение матричной рамки, конструктивно схожей с матричной рамкой магазина буквоотливной наборной машины. Основное различие в том, что здесь матричная рамка содержит не матрицы для отливки литер из металла, а фотонегативы типографских знаков. Когда перфолента вызывает ту или иную букву, матричная рамка механически устанавливается в положение, при котором эта буква может быть экспонирована в нужном месте фотобумаги или фотопленки. Кегль шрифта изменяется перемещением оптической увеличительной системы.

В машинах второго поколения, наиболее распространенных в настоящее время, имеется дисковый или барабанный шрифтоноситель, по окружности которого напечатаны прозрачные буквы алфавита. При вращении шрифтоносителя вводимая перфолента запускает экспонирующее устройство, которое дает световую вспышку в тот момент, когда нужная буква оказывается на пути света. При экспонировании свет, несущий изображение буквы, проходит через увеличительную систему, положением которой определяется кегль шрифта. В ходе экспонирования шаговый механизм определяет ширину буквы и передвигает фотопленку или фотобумагу в положение для экспонирования следующей буквы. Производительность фотонаборных машин второго поколения намного выше, чем первого, и составляет от 20 до 600 знаков в секунду и более.

Машины третьего поколения – это высокоскоростные установки с электронно-лучевой трубкой, не имеющие деталей, которые совершали бы механическое движение во время набора. В таких установках все знаки хранятся в форме шрифтовых комплектов в памяти компьютера. Когда они вызываются вводимой перфолентой или магнитной лентой, компьютер выводит их на экран монитора. С помощью оптической системы знаки моментально регистрируются на фотоматериале. Кегль шрифта регулируется электронными средствами, производительность может составлять от 100 до 10 000 знаков в секунду в зависимости от требуемого качества печати.

По завершении набора экспонированный фотоматериал (пленка или бумага) остается в светонепроницаемой кассете. Фотопленка проходит химическую обработку в темном помещении, и полученный негатив непосредственно используется для изготовления печатной формы. На фотобумаге же после обработки получаются гранки текста, подобные пробному оттиску.

Репродукционные установки. Оригиналами для копирования при изготовлении печатных форм офсетной печати служат прозрачные фотографические изображения (на фотопленке) текста, набранного рассмотренными выше методами, репродуцируемых оттисков, фотоснимков, иллюстраций и всех других материалов, которые требуется представить в печатном виде. Для получения таких промежуточных оригиналов применяются репродукционные фотоаппараты.

При изготовлении печатных форм используются репродукционные оригиналы трех видов: штриховые, полутоновые и цветные. Штриховые оригиналы, подобно штриховым клише для высокой печати, содержат лишь линии и темные участки без полутоновых градаций. Они служат для воспроизведения репродуцируемых оттисков, фотонаборных гранок на бумаге, графиков, рисунков пером и пр. Полутоновые же офсетные оригиналы, как и полутоновые клише высокой печати, содержат до 30–45 переходов тона от насыщенного до нулевой плотности.

При изготовлении штрихового или полутонового репродуцируемого оригинал-макета обычно выполняется фотомонтаж. Все штриховые оригиналы наклеиваются на листы плотной бумаги в том положении, в каком они должны быть на окончательно запечатанном листе. Результатом такой операции, аналогичной постраничной верстке текста в случае металлического набора, является смонтированный оригинал-макет всего типографского заказа. Этот оригинал-макет фотографируется как единое целое.

После экспонирования в репродукционном фотоаппарате штрихового оригинал-макета в фотоаппарат помещается полутоновый оригинал, и фотоаппарат устанавливается на размер. Чтобы воспроизвести полутоновый оригинал, его необходимо преобразовать в изображение из полутоновых точек. Это осуществляется с помощью полутонового растра, как описывалось выше. Затем штриховые и полутоновые негативы совмещают по соответствующей схеме спуска так, чтобы впоследствии они оказались в правильном положении на запечатанном листе бумаги. После этого негативы переносятся на монтажный лист, который становится носителем всех негативов, используемых при изготовлении офсетных печатных форм.

Многокрасочная печать. Цветной оригинал труднее воспроизвести, чем штриховой и полутоновый, т.к. для этого требуется цветоделение. Цвета субтрактивного смешения – синий, зеленый и красный – образуются при наложении друг на друга соответственно голубого и пурпурного, голубого и желтого, пурпурного и желтого. Чтобы точно воспроизвести требуемый цвет, например зеленый или оранжевый, нужно точно воспроизвести соотношение в нем трех цветовых составляющих – желтого, голубого и пурпурного. Это достигается при помощи трех цветоделительных светофильтров, каждый из которых пропускает на черно-белую фотопленку только свет, соответствующий его цвету. Затем уже нетрудно воспроизвести такую же смесь цветов на бумаге путем последовательного наложения желтой, синей и красной красок с трех разных печатных форм. Как правило, добавляют еще и четвертую форму – для черного цвета, что позволяет увеличить диапазон плотности и повысить четкость на участках тени. Цветоделение осуществляется в репродукционном фотоаппарате, но существует и более современный метод электронного цветоделения, о котором подробнее будет сказано ниже.

Цветоделительная съемка требует четырехкратного экспонирования оригинала на отдельные фотопленки. Первая экспозиция делается через красный светофильтр, который пропускает только голубой, или синий, свет от оригинала. Вторая экспозиция делается через зеленый светофильтр, и регистрируется только красный, или пурпурный, свет. При третьей экспозиции регистрируется только желтый свет через синий светофильтр. Четвертая экспозиция, для черного цвета, состоит из трех частичных экспозиций: одной – через красный светофильтр, другой – через зеленый и третьей – через синий. По четырем цветоделительным негативам изготавливаются офсетные формы, по одной для каждой краски. При последовательном печатании эти формы точно воспроизводят цветовой состав оригинала.

Изготовление печатных форм. Офсетные печатные формы обычно изготовляются из металлической фольги толщиной 0,01–0,05 мм. Два основных типа таких форм – поверхностные и «глубокий офсет», причем к последним относятся и биметаллические.

Поверхностные формы – это действительные формы плоской печати: их печатающие участки расположены на одном уровне с непечатающими. Защитное светочувствительное покрытие может наноситься наливанием в центре формы с последующим вращением для выравнивания либо накатыванием. Выпускаются также формные материалы с заранее нанесенным светочувствительным защитным слоем. Поверхностные формы обычно применяются в тех случаях, когда тираж не превышает 45 000.

Формы глубокого офсета обрабатываются так же, как и поверхностные, но их непечатающие участки заглубляются химическим травлением. Благодаря этому такие формы более тиражестойки, чем поверхностные, и выдерживают до 500 000 оттисков.

Биметаллические формы состоят из двух слоев разных металлов, одного – очень хорошо смачиваемого краской (например, меди) и образующего печатающие участки, а другого – плохо смачиваемого краской (например, неполированного хрома) и образующего пробельные участки. Биметаллические формы четко воспроизводят высококачественные изображения и выдерживают до 3–5 млн. оттисков.

Офсетные машины. Машины плоской офсетной печати делятся на плоскопечатные и ротационные. Ротационные машины по виду запечатываемого материала (бумаги) подразделяются на листовые и рулонные. По конструкции многих узлов, красочных аппаратов и др. офсетные машины аналогичны машинам высокой печати. Основная же их отличительная особенность – наличие офсетных передаточных цилиндров и увлажняющих аппаратов.

Листовые офсетные машины. В листовой ротационной офсетной машине печатаемое изображение переносится с формы на бумагу с помощью трех цилиндров – формного, передаточного и печатного. Форма плоской печати закрепляется на формном цилиндре. Увлажняющий аппарат наносит на ее пробельные элементы тонкий слой увлажняющего раствора, после чего красочный аппарат накатывает на нее краску. При вращении формного цилиндра красочное изображение переносится на гладкую резино-тканевую пластину, закрепленную на передаточном цилиндре. Эта пластина переносит изображение на бумажный лист, удерживаемый захватами на печатном цилиндре.

Листовая офсетная машина может быть однокрасочной и многокрасочной. Многокрасочные машины агрегатируются из отдельных печатных секций (содержащих формный, передаточный и печатный цилиндры) с отдельными красочными и увлажняющими аппаратами – по числу печатаемых красок. Бумага переходит из одной секции в другую, и полный оттиск получается последовательным наложением красок. Порядок наложения красок определяется конкретной спецификацией заказа. Чаще всего они накладываются в таком порядке: желтая, красная, синяя, черная.

Одной из типичных разновидностей ротационной офсетной машины является двухсторонняя листовая машина. В ней имеются два формных и два передаточных цилиндра. На обоих формных цилиндрах закрепляется по печатной форме, и красочные изображения переносятся с форм на соответствующие передаточные цилиндры. Бумага зажимается между передаточными цилиндрами, и красочные изображения переносятся с них на разные стороны бумажного листа. При этом один передаточный цилиндр играет роль печатного цилиндра для другого.

Еще один вид листовой офсетной машины – плоскопечатная машина. Здесь форма плоской печати и бумага располагаются на талере машины. Над талером движется каретка с передаточным цилиндром, увлажняющим и красочным аппаратами, которая за один проход увлажняет поверхность формы, накатывает на нее краску и переносит красочное изображение на передаточный цилиндр, а с него – на бумагу.

Рулонные офсетные машины. Рулонные офсетные машины, как и рулонные ротационные машины высокой печати, печатают на непрерывном бумажном полотне. Запечатанное полотно либо снова сматывается в рулон, либо разрезается на листы, фальцуется, брошюруется и переплетается в соответствии со спецификацией заказа.

Рулонные офсетные машины разделяются на секционные, двухсторонние и планетарные. Секционные, подобно многокрасочной листовой машине, состоят из нескольких секций (по числу печатаемых красок), печатающих каждая свою краску на одной стороне бумажного полотна. В двухсторонней машине передаточный цилиндр одной секции служит печатным цилиндром для передаточного цилиндра другой, так что за один прогон бумажное полотно запечатывается с обеих сторон. В планетарной машине красочные секции группируются вокруг общего печатного цилиндра. Печатание осуществляется при прохождении бумажного полотна между ним и передаточными цилиндрами отдельных секций.

ГЛУБОКАЯ ПЕЧАТЬ Глубокая печать – это процесс печатания с сотовых красочных ячеек, химически вытравленных вглубь от поверхности медного, чугунного, стального или алюминиевого цилиндра. На один квадратный сантиметр площади цилиндрической поверхности металлической печатной формы приходятся тысячи таких ячеек. Процесс начинается в репродукционном фотоаппарате с переноса на фотопленку изображения репродукционного оттиска, гранок набранного текстового материала, штриховых и полутоновых фотоиллюстраций.

Перенос фотографического изображения с фотопленки на формный цилиндр осуществляется с использованием светочувствительного промежуточного слоя так называемого резиста. Один из самых обычных резистов – сенсибилизированная желатиновая «пигментная бумага». Свет мощной лампы направляется через фотопленку на кислотостойкую пигментную бумагу. Под действием света желатиновое покрытие задубливается. Там, где света меньше, т.е. на темных участках, желатина задубливается в меньшей степени, чем на светлых.

После экспонирования пигментная бумага накладывается на формный цилиндр и незадубленный резист вымывается. Цилиндр помещают в кислотную ванну, в которой печатающие участки вытравливаются на глубину, зависящую от количества задубленного резиста, оставшегося на цилиндре. В результате получается цилиндрическая форма глубокой печати с вытравленными ячейками разной глубины. От глубины ячейки зависит количество заполняющей ее краски, а следовательно, и тон (градация серого) на данном участке печатаемого изображения.

Электронное гравирование. Электронное гравирование, в отличие от подготовки формного цилиндра глубокой печати, состоит только из двух этапов: фотографирования и гравирования. Оригинал фотографируется, а изображение, полученное на фотопленке, сканируется фотоэлектронным устройством. Электронные импульсы, возникающие при сканировании, управляют резцом, который создает на поверхности цилиндра ячейки разной глубины.

Машина глубокой печати. После травления или гравирования поверхность формного цилиндра глубокой печати для увеличения его срока службы покрывается слоем хрома. Затем цилиндр монтируется в печатной машине. Машина глубокой печати не имеет краскоподающей, накатной и раскатной систем. Ее формный цилиндр при вращении частично погружен в резервуар с жидкой краской. Избыток краски удаляется с его поверхности ракельным механизмом, так что краска остается только на заглубленных участках изображения. После этого цилиндр приводится в контакт с бумагой для печатания.

СПЕЦИАЛЬНЫЕ СПОСОБЫ ПЕЧАТИ Наряду с тремя основными способами (высокая, офсетная и глубокая печать) в полиграфии применяется ряд других видов печати. Почти все они носят специальный характер. Некоторые из них рассматриваются ниже.

Трафаретная печать. Трафаретная печать широко известна не только в полиграфии. Изготовленный вручную или фотомеханическим способом трафарет накладывается на густую сетку из шелка, найлона или нержавеющей стали, натянутую на деревянной рамке. На плоскую поверхность помещают бумагу или другой материал для запечатывания, а сверху устанавливают деревянную рамку с сеткой так, чтобы сетка и трафарет вплотную прилегали к запечатываемому материалу. Затем по трафарету резиновым валиком прокатывают густую краску. Там, где в соответствии с печатаемым изображением краска проходит через трафарет, она просачивается и сквозь сетку на запечатываемый материал.

Трафаретная печать отличается универсальностью. Она пригодна для печатания на самых разнообразных материалах, от стекла и металлов до дерева и тканей. К тому же такой процесс позволяет наносить толстые слои краски. Описанный выше ручной процесс трафаретной печати может быть механизирован с использованием плоскопечатных листовых или рулонных машин, которые дают от 200 до 6000 оттисков в час.

Фототипия. Фототипия обеспечивает воспроизведение оригинала с высокой верностью, но пригодна она в основном для малотиражной продукции. Существуют два варианта фототипии: один с очень густой сеткой для достижения исключительной четкости и тоновых градаций, а другой – с плавными переходами тона, без полутонового растра и без полутоновых точек.

В первом варианте на печатную форму, покрытую желатиной, экспонируют негатив через сетку-растр. В светлых местах желатина задубливается под действием света и становится водоотталкивающей, но легко смачивается краской. Изготовленная форма сушится, изгибается и закрепляется на формном цилиндре печатной машины. Здесь она увлажняется валиками увлажняющего аппарата, и красочное изображение переносится на передаточный цилиндр, а с него – на бумагу, закрепленную в захватах печатного цилиндра.

Во втором варианте фототипии отпадает необходимость в полутоновых градациях, создаваемых растром. Стеклянная пластинка покрывается связующим веществом и раствором желатины с бихроматом, а затем ее экспонируют через пленочный негатив. На освещенных участках желатина задубливается пропорционально интенсивности проходящего через негатив света. После экспонирования пластинку промывают в водном растворе глицерина; при этом незадубленные участки разбухают сильнее задубленных, вследствие чего происходит изменение поверхности фототипного слоя и формирование пробельных и печатающих элементов, которые создают полную иллюзию тонового изображения на оттиске.

Рельефное красочное тиснение. Это специальный способ печати, при котором участки бумаги, покрытые краской, оказываются выпуклыми. Он применяется для печатания высококачественных пригласительных билетов, фирменных бланков, визитных карточек.

Воспроизводимый печатный материал должен быть выгравирован. На выгравированную форму наносится краска, а ее излишек удаляется, так чтобы краска оставалась только в углублениях формы. Затем на форму накладывается запечатываемая бумага, а сверху – другая форма, выпуклости которой точно соответствуют углублениям первой. При натиске бумага одновременно запечатывается и приобретает рельефность.

Выпуклая печать. Такой метод тоже дает рельефную печать, но он технически проще. При выходе запечатанного листа из машины высокой печати на свежую краску наносится полимерный порошок и бумажный лист вводится в нагревательное устройство. Полимер при нагревании вызывает разбухание краски, в результате чего запечатанная поверхность оказывается приподнятой. Хотя качество полученной продукции ниже, чем при методе рельефного красочного тиснения, это с лихвой компенсируется универсальностью, простотой и дешевизной метода выпуклой печати.

БРОШЮРОВОЧНО-ПЕРЕПЛЕТНЫЕ ПРОЦЕССЫ Брошюровочно-переплетные процессы – важная часть книгопечатания. В их число входят разрезка, фальцовка и брошюровка.

Разрезка и фальцовка. Отпечатанные листы книжно-журнальных изданий разрезают до нужного размера на одноножевых бумагорезальных машинах. Такая машина состоит из горизонтального стола-талера, на который укладывают стопы разрезаемых листов, и стального ножа с электроприводом. С помощью подавателя (затла) стопу листов устанавливают на заданный размер отреза, и нож опускается, точно и ровно разрезая стопу на две части.

Фальцовка (операция сгибания отпечатанных листов в тетради заданного формата) может выполняться вручную и на автоматических машинах. В кассетных машинах с высокой производительностью лист подается вращающимися валиками. Дойдя до упора, передняя кромка листа останавливается, но подающие валики продолжают перемещать остальную часть листа. Лист изгибается и образует петлю, которая захватывается фальцующими валиками и уплотняется в сгиб. Фальцевальные машины могут настраиваться на многократную фальцовку либо за одну операцию выполнять фальцовку, перфорирование, продольную резку, склейку и резку до окончательного формата.

Переплетные процессы. Наиболее сложны брошюровочно-переплетные процессы при изготовлении книжной продукции. Три основных вида брошюровочно-переплетных работ таковы: изготовление книг в переплетных обложках, изготовление книжно-журнальных изданий в мягких обложках и механическое скрепление тетрадей (спиралью, кольцами, скобами и т.д.).

Книги в переплетных обложках. Жесткие переплеты применяются в тех случаях, когда требуется долговечность. Процесс изготовления книг в переплетных обложках состоит из восьми основных операций: 1) резки листов, 2) фальцовки и прессования, 3) сшивания листов в тетради, 4) комплектовки блоков, 5) скрепления блоков, 6) обработки блоков, 7) подготовки блоков к скреплению с переплетными крышками и 8) соединения блоков с крышками.

В результате резки и фальцовки листов получаются тетради – части книги, каждая из которых печаталась на одном листе. Тетради сшиваются в блоки. Поблочное шитье проволокой проводится двумя способами: внакидку и втачку. Издания, скомплектованные вкладкой, сшиваются внакидку. При этом проволочные скобы проходят через сгиб корешка блока извне и загибаются внутри. Блоки, скомплектованные подборкой, сшивают втачку: блок прошивают проволочными скобами на некотором расстоянии (4–5 мм) от края корешка.

Наиболее распространенный способ потетрадного скрепления блоков – шитье нитками, причем нитками можно сшивать и поблочно – внакидку и втачку. При потетрадном шитье нитками тетрадь блока прошивается внакидку через корешковый сгиб и скрепляется с предыдущей тетрадью теми же нитками. Более экономична и обеспечивает более прочное скрепление прошивка втачку блока, скомплектованного подборкой, с отступом на 4–5 мм вдоль всего корешка.

После сшивания книжных блоков производятся прессовый обжим и заклейка корешка. При обжиме уменьшается толщина корешка (увеличившаяся из-за сшивания), что улучшает условия последующей обрезки. Кроме того, при обжиме повышается прочность соединения тетрадей и возрастает монолитность корешка блока. Обжатые блоки обрезают с трех сторон до нужного формата на трехножевых резальных машинах. Для изданий среднего и большого объемов корешки книжных блоков круглят. При этом улучшается внешний вид книги, а также ее раскрываемость. Обработку блока завершают наклейкой на корешок блока упрочняющих элементов (тканевой тесьмы и бумажной полоски).

Последняя операция – соединение блоков с переплетными крышками. На форзацы и клапаны марли наносят раствор клея, а затем блок вставляют в крышку. Во избежание коробления переплетенных книг их выдерживают (с нагревом) под прессом до высыхания клея.

Издания в мягких обложках. Изготовленные описанным выше способом блоки соединяются с обложками из печатной или обложечной бумаги (либо бумаги с полимерным покрытием и нетканых материалов) клеем, наносимым на корешок.

Разъемное скрепление. По краю скрепляемых страниц пробиваются отверстия, в которые затем вставляются пластмассовые или проволочные спирали, разъемные кольца и т.п.

НОВАЯ ТЕХНИКА Успехи современной техники, особенно в области автоматики, электроники и компьютеров, революционизировали печать. Преобразования начались в 1950-х годах, когда появились фотонабор и электронное цветоделение. Но полностью возможности этих нововведений раскрылись лишь в 1970-х годах, когда были созданы видеотерминалы, обеспечивающие возможность просмотра и корректировки набранного текста, и электронные генераторы растровых точек, позволяющие создавать полутона непосредственно в электронных цветоделителях. Эти изменения, а также появление микро-ЭВМ постепенно привели к тому, что полиграфия из ремесла превратилась в высокотехнологичное производство.

Набор. Фотонабор, появившийся в 1950, постепенно развивался. Первые фотонаборные машины представляли собой чисто механические устройства для набора фотографического шрифта. Позднее появились электромеханические устройства, которые давали изображения типографских знаков на фотобумаге. Эти изображения можно было увеличивать или уменьшать оптическими средствами. И наконец, были созданы полностью электронные наборные системы. Такие системы способны преобразовывать изображения в цифровую форму со скоростью до 500 знаков в секунду и выводить их на экран монитора или, с помощью лазерного луча, на фотобумагу.

Ввод. Печатный материал может вводиться в наборное устройство разными способами. Прямой ввод осуществляется непосредственно с клавиатуры, подключенной к наборному устройству. При этом быстродействие последнего ограничивается скоростью работы оператора, но текст для ввода можно предварительно записывать на информационном носителе.

Автономные клавиатурные устройства записывают текст для ввода на различных носителях. Устройства оптического ввода сканируют машинописный оригинал, преобразуют изображение в электронные сигналы и регистрируют его. Универсальные оптические сканеры могут читать тексты, выполненные любым машинописным или типографским шрифтом. Текст выводится на монитор, что дает возможность вносить правку и выполнять постраничную верстку непосредственно на экране.

Процессор текстов – это программное обеспечение для персонального компьютера, позволяющее вводить, хранить, просматривать, редактировать, форматировать, верстать и распечатывать тексты так же, как это делается со специализированным наборным устройством. Скоростные лазерные принтеры дают качество печати, не уступающее выполненному средствами традиционной полиграфии.

Постраничная верстка. В электронных наборных устройствах предусматриваются системы донаборной обработки текста, компонующие текст и графический материал в страницы, которые могут служить репродуцируемыми оригиналами при изготовлении печатных форм. При этом графический материал вводится цифровыми преобразователями изображения, такими, как обычные оптические сканеры. Устройства для растрового сканирования изображения и записи битовой карты способны вырабатывать текст и графические иллюстрации с высоким разрешением.

Передача данных. В компьютерной технике информация представляется цифровым сигналом, состоящим из цифр 0 и 1. Цифровой сигнал может передаваться по обычным телефонным линиям, по коаксиальному СВЧ-кабелю, по радио со спутниковой ретрансляцией и по оптическому кабелю (лазерным лучом). Таким образом, информация в настоящее время может передаваться на большие расстояния со скоростью света. Примером применения такой техники могут служить журналы «Ньюсуик», «Тайм» и «Ю-Эс ньюс энд уорлд рипорт», которые еженедельно набираются в своих центральных редакциях, после чего набор передается по спутниковой связи в типографии, расположенные по всему миру.

Передача огромных массивов цифровых данных может потребовать много времени. Поэтому применяется метод сжатия (уплотнения) данных. Коэффициент сжатия данных может составлять 8:1, 10:1 и 20:1 в зависимости от требуемой четкости изображения.

Электронное цветоделение. Электронные цветоделительные машины, появившиеся в 1950-х годах, позволили упростить и ускорить операции цветоделения и цветокоррекции. Такая машина состоит из четырех основных узлов: 1) входного вращающегося барабана, на котором закрепляется оригинал, 2) сканирующей головки с фотоэлементами и светофильтрами, которые дают электронные сигналы интенсивности красного, зеленого и синего цвета, 3) цветоделителя-цветокорректора, преобразующего цветовые сигналы в четыре печатных цвета (желтый, пурпурный, голубой и черный), скорректированных в соответствии с установленной программой, и 4) выходного вращающегося барабана, на котором закреплена выходная фотопленка для экспонирования цветокорректированными изображениями, что дает желтую, пурпурную, голубую и черную фотоформы. Электронная цветоделительная машина сокращает время, затрачиваемое на цветоделение, с 4 ч и более до 10 мин и менее, устраняя при этом в большинстве случаев необходимость в ручной цветокоррекции.

Электронные системы цветовых допечатных работ. Электронный набор и электронное цветоделение существенно сократили затраты времени на эти две важные операции, и узким местом стала операция разделения фотопленки на макеты текста и иллюстраций. Были разработаны электронные системы (содержащие системы донаборной обработки текста, процессоры изображений и наборные машины), позволяющие компоновать макеты текста с некоторыми черно-белыми иллюстрациями. Созданы также цифровые электронные системы (со сканерами, станциями обработки изображений, монтажными столами и выходными сканерами) для монтажа текста с цветными иллюстрациями.

Электронное макетирование. Методом автоматизированного проектирования разработаны системы монтажа пленки, выполняющие определение формата набора и размеров раскладки и полей, положения приводочных меток, номеров страниц, расположения колонтитулов и т.д., а также обработку элементов изображений, раскладку оригиналов по цветам, размещение иллюстраций, печатаемых на развороте, и определение других позиционных данных. После того, как макетирование выполнено на пленке или соответствующим образом на масочных листах, элементы изображений пленки закрепляются на монтажных листах. Создана монтажная машина, которая автоматически наносит элементы изображений пленки на монтажные листы в соответствии с цифровыми данными макета.

Пробные цветные изображения. Когда пленки смонтированы в макет для изготовления фотоформы, необходимо пробное изображение для проверки правильности расположения элементов, в том числе и цветов. Кроме того, пробное изображение нужно, чтобы оценить, как будет выглядеть издание после печатной машины. Проверяются приводочные метки, раскладка по цветам и расположение иллюстраций на разворотах.

Пробный оттиск для проверки окончательно откорректированного изображения ранее всегда делался на печатной машине. Оттиски для внутренней корректуры в ходе полиграфического процесса делались на отдельной установке пробной цветной печати. Оттиски на самой печатной машине дорогостоящи. Если же изготавливать печатные формы и делать оттиски на других машинах, аналогичных производственным, то это требует много времени. Кроме того, оттиск, сделанный на одной машине, может выглядеть иначе, нежели оттиск, полученный на другой и даже на той же самой, но в других условиях. К тому же объем цветной печати столь быстро увеличивается, что требуются совсем иные темпы пробной печати.

От большинства систем пробной цветной печати не ожидается точного соответствия машинным оттискам. В одних используются красители, в других – сухие пигменты, используются также пластиковые основания, пластины с покрытием, многослойные изображения на тонких пленках, пигментные тонеры с переносом на специальную подложку. Главными трудностями остаются плохая воспроизводимость пробных изображений, недостаточная исследованность процессов печатания и их низкая контролируемость.

Но есть ряд систем, которые позволяют получать хорошо воспроизводимые пробные цветные изображения в пять раз быстрее, чем на печатных машинах, и притом не ниже, а даже выше качеством. Разрабатываются системы с красящими средствами типа печатных красок для получения пробных изображений на печатном субстрате. Всюду, кроме журнальной рекламы, пробные изображения которой представляются заказчику на утверждение, обычные ранее машинные пробные оттиски в значительной мере вытеснены пробными изображениями, получаемыми на специальных установках.

Способы печати. Благодаря простоте подготовительных операций и изготовления печатных форм в настоящее время самым распространенным способом печати стала офсетная печать. Но формы глубокого офсета и даже некоторые биметаллические формы вытеснены фотоформами. Позитивные фотополимерные формы выдерживают свыше миллиона оттисков на рулонных офсетных машинах для журнальной и каталожной печати. Трудности поддержания баланса между краской и водой устранены благодаря разработке печатных форм, не требующих увлажнения. В печатных системах «ЭВМ – печатная форма» используются электростатические формы, экспонируемые лазерным излучением. Сканеры фотоформ управляют красочными соплами печатной машины. Современные рулонные печатные машины оборудованы системами автоматической приводки, контроля за отходами и микропроцессорной системой управления.

Глубокая печать всегда была многотиражным печатным процессом. В настоящее время развитие этого способа печати идет в направлении обеспечения его экономичности в области малых тиражей и малых времен производственного цикла, в которой ранее господствовала офсетная печать.

Формные цилиндры глубокой печати чаще всего изготавливались по многотоновым изображениям, которые трудно корректировать и контролировать. Наиболее распространенный метод изготовления таких цилиндров – электромеханическое гравирование. При таком методе многотоновые изображения на вращающемся барабане сканируются оптическими головками, сигналы которых подаются на компьютер для преобразования в цифровую форму. Цифровые сигналы управляют резцом с алмазным наконечником, который прорезает в медном покрытии вращающейся заготовки формного цилиндра ячейки разной ширины и глубины со скоростью порядка 4000 ячеек в секунду. С цилиндров обычно делаются пробные оттиски на специальных печатных установках, и они либо корректируются вручную химическим травлением, либо переделываются. Процесс был существенно ускорен и улучшен благодаря применению полутонового гравирования, при котором в электромеханических гравирующих устройствах используются полномасштабные полутоновые изображения (как в офсетной печати), а также установок пробной цветной печати, имитирующих оттиск печатной машины. После таких усовершенствований глубокая печать в настоящее время может конкурировать с офсетной печатью на рынке малотиражных изданий.

Среди других методов изготовления формных цилиндров глубокой печати можно назвать: 1) лазерное гравирование, при котором ячейки переменной ширины и глубины прожигаются в пластмассовом покрытии заготовки формного цилиндра лазерным лучом, управляемым в соответствии с цифровыми данными электронного сканера, электронной системы цветовых допечатных работ или компьютера; 2) применение фотополимера, который становится крайне твердым после освещения и обработки; 3) электронно-лучевое гравирование, при котором на поверхности покрытой медью заготовки формного цилиндра гравируется 100 000–150 000 ячеек в секунду, что позволяет уменьшить время изготовления формного цилиндра в 3 раза по сравнению с электромеханическим гравированием.

Другие способы печати. Многие новые способы печати отличаются от традиционных тем, что в них не используются печатные формы и они являются бесконтактными. Такие способы основаны на фотографических, электрографических, магнитографических процессах, струйно-принтерной технике, термографии, механическом графопостроении и электроэрозии.

ИСТОРИЯ ПЕЧАТИ История высокой печати начинается с изобретения И.Гутенбергом в Страсбурге разборного шрифта. В 1440 Гутенберг ввел литые металлические литеры, из которых можно было набирать слова для печатания.

Правда, в Китае глиняными литерами с рельефными знаками – иероглифами – пользовались за 400 лет до Гутенберга, а корейцы за 300 лет до него отливали литеры из бронзы. Но такая техника не была распространена в Европе до Гутенберга, вклад которого получил всемирное признание после того, как он напечатал знаменитую библию Мазарини.

Первоначально шрифт отливали вручную шрифтолитейщики, каждый из которых измерял его на свой лад. Но когда выросла целая отрасль полиграфической промышленности, возникла потребность в единообразии, и в 1764 была введена типографская система измерения в пунктах. Ее разработал французский словолитчик П.Фурнье, а позднее усовершенствовал Ф.Дидо, после чего она широко распространилась в промышленности. Этой системой пользуются во многих странах (в т.ч. и в России), кроме Англии, США и некоторых других, где принята несколько видоизмененная система.

Изобретение первой литеронаборной машины в 1823 приписывается В.Черчу, американцу, жившему в Англии. Позднее его машину усовершенствовал Д.Брюс. Но лишь в 1885 О.Мергенталер, изобретатель немецкого происхождения, работавший в США, запатентовал линотип – первую практически пригодную строкоотливную машину (см . МЕРГЕНТАЛЕР, ОТМАР). Буквоотливную машину монотип изобрел Т.Ланстон в 1888. В 1905 У.Лудлоу создал крупнокегельную строкоотливную машину, а в 1911 Г.Риддер построил первую строкоотливную машину интертип.

Первые печатные машины представляли собой ручные деревянные прессы. В Северной Америке на первом таком прессе начал работать в 1638 С.Дей в Кеймбридже (шт. Массачусетс). В 1790 В.Николсон в Великобритании изобрел плоскопечатную машину; приблизительно в 1800 Ч.Стенхоуп построил первую чугунную печатную машину с ручной подачей бумаги; в 1810 Ф.Кениг ввел в действие первую плоскопечатную машину с паровым приводом; в 1827 И.Адамс изобрел тигельную печатную машину с паровым приводом; в 1865 В.Баллок создал первую рулонную печатную машину.

Офсетная печать. Примерно в 1796 в Мюнхене (Германия) А.Зенефельдер начал применять метод литографии. Процесс был основан на использовании пористого кельхаймского камня, который легко полируется, приобретая гладкую шелковистую поверхность. Зенефельдер наносил свои рисунки на такой камень жирными карандашами, сделанными из воска, ламповой копоти, масла и мыла. При увлажнении камень впитывал воду только там, где его поверхность не была намаслена карандашом.

Благодаря успехам Зенефельдера, изготовлявшего высококачественные литографии, литографический способ печати широко распространился по всему миру. Но техника оставалась примитивной, пока во второй половине 19 в. не была изобретена усовершенствованная плоскопечатная машина. Однако изображения приходилось рисовать или вытравливать на каменной форме в зеркально-отраженном виде, чтобы они имели правильный вид после переноса на бумагу. В 1905 А.Рубел в США изобрел офсетную печать и построил печатную машину с переносом изображения с печатной формы сначала на промежуточный передаточный цилиндр, а затем уже на бумагу. В 1906 аналогичную машину разработал и начал выпускать Ф.Харрис.

Хотя офсетная печать заняла ведущее место в мире печати, первоначальная литографская техника Зенефельдера с каменными формами по-прежнему применяется для изготовления высокохудожественных репродукций. См. также КНИГА; ГАЗЕТА.

Найти "ПОЛИГРАФИЯ " на

Понравилась статья? Поделиться с друзьями: