Полиамид. Полимеры Выход и молекулярная масса полиамида зависят

Почти в 10 раз легче пробки (средняя плотность не более 20 кг/м 3 );

Коэффициент теплопроводности 0,03 вт/(м× К).

Обугливается, но не горит в открытом пламени при 500 °С, а при введении в композицию антипиренов не воспламеняется в среде кислорода.

Обладает значительным водопоглощением и чувствительностью к воздействию агрессивных химических реагентов. При хранении и эксплуатации её защищают целлофаном или полиэтиленовой плёнкой.

Применяют в качестве тепло- и звукоизоляционного материала в строительстве, при изготовлении холодильных установок, хранилищ и сосудов для перевозки жидкого кислорода, как заполнитель пустотелых конструкций в транспортном машиностроении.

Карбамидный клей

клей на основе мочевиноформальдегидных смол и меламиноформальдегидных смол (так называемых карбамидных смол), а также их смесей.

в больших количествах применяют в деревообрабатывающей промышленности при изготовлении фанеры, мебели и др.; используют для склеивания фосфора и металла.

представляет собой водный раствор карбамидной смолы. Часто в состав клея входит отвердитель (щавелевая, фталевая, соляная кислоты или некоторые соли) и наполнитель (мука бобовых или злаков, крахмал, древесная мука, гипс и т.п.).

Например , клей К-17 состоит

из 100 частей (по массе) смолы МФ-17, 7 - 22 частей 10%-ного водного раствора щавелевой кислоты, 6-8 частей древесной муки.

может отверждаться как при нагревании, так и при нормальной температуре (только в присутствии отвердителя).

Полиамиды

твердые полупрозрачные и непрозрачные пластики, размягчающиеся при температуре 150-180°С. Отличаются высокими химической стойкостью, прочностью, устойчивостью к трению, упругостью. Полиамиды плохо воспламеняются, горят синеватым пламенем, издавая запах жженой кости.

Протеины (белки), такие как шелк, на смену которым пришел найлон, также являются полиамидами.

Строение полиамидов

Отличительной чертой полиамидов является наличие в основной молекулярной цепи повторяющейся амидной группы –C(O)–NH–. Различают алифатические и ароматические полиамиды. Известны полиамиды, содержащие в основной цепи как алифатические, так и ароматические фрагменты.

Макромолекулы полиамидов состоят из гибких метиленовых цепочек и регулярно расположенных вдоль цепи полярных амидных групп.

амид уксусной кислоты (ацетамид)

Амиды – функциональные производные карбоновых кислот, в которых гидроксил –ОН в карбоксильной группе –СООН замещен на аминогруппу –NH2 .

Способы получения полиамидов

1. поликонденсация (эта реакция, называется полиамидированием ) дикарбоновых кислот (или их диэфиров)

и диаминов.

Поликонденсацию проводят преимущественно в расплаве, реже в растворе высококипящего растворителя или в твердой фазе.

Для получения полиамидов высокой молекулярной массы из дикарбоновых кислот и диаминов полиамидирование проводят при эквимолярных

соотношениях исходных веществ.

Таким образом получают полиамиды идущие на производство волокон типа анид (НАЙЛОН ).

2. Поликонденсация диаминов, динитрилов и воды в присутствии катализаторов. Например кислородных соединений фосфора и бора, в частности смеси фосфористой и борной кислот.

Процесс проводят при 260-300 °С. Вначале под давлением, периодически выпуская из зоны реакции выделяющийся аммиак. Заканчивают при атмосферном давлении.

Нитрилы - органические соединения общей формулы R-C≡N, формально являющиеся производными синильной кислоты HC≡N.

3. Полимеризация аминокислот лактамов. Главным образом, капролактама. Процесс проводят в присутствии воды, спиртов, кислот, оснований и других веществ, способствующих раскрытию цикла, или в присутствии катализаторов, в растворе или расплаве при высокой температуре.

капролактам

Лактам - циклический амид

Таким образом получают капрон и энант .

Получение капрона

Гидролиз капролактама

Поликонденсация

NH2 -(CH2 ) 5 - COOH + NH2 -(CH2 ) 5 - COOH + ... →

NH2 -(CH2 ) 5 - CO - NH -(CH2 ) 5 - CO - ... + n H2 O Упрощенная схема

В промышленности его получают из капролактама. Процесс ведется в присутствии воды, играющей роль активатора, при температуре 240-270° С и давлении 15-20 кгс/см2 в атмосфере азота.

Полимер образуется благодаря взаимодействию амино - и карбоксильных групп молекул исходных веществ или благодаря соединению разомкнувшихся молекул лактама .

Для производства стабильных по свойствам полиамидов и регулирования их молекулярной массы процессы ведут часто в присутствии регуляторов молекулярной массы – чаще всего уксусной кислоты.

Они присоединяются к реакционноспособным концевым группам растущей цепи и блокируют их, прекращая дальнейший рост молекул.

В названиях алифатических полиамидов после слова "полиамид" (в зарубежной литературе-"найлон") ставят цифры, обозначающие число атомов углерода в веществах, использованных для синтеза полиамида.

Полиамид на основе гексаметилендиамида и адипиновой

кислоты называется полиамидом-6,6 , или найлоном-6,6

первая цифра показывает число атомов углерода в диамине, вторая -в дикарбоновой кислоте.

Полиамиды (ПА) Полиамидами называются полимеры, содержащие амидную группу в основной цепи макромолекул Широкое применение нашли полиамиды: ПА-6, ПА-610 и смешанный полиамид ПА-54. Цифры 6, 10 и др. в условном обозначении полиамидов указывают на количество атомов углерода в составе исходных мономеров. Другие названия полиамидов – найлон, капрон, Chemlon, перлон, зайтел и др.

Внешние признаки полиамидов. Это твердые, рогоподобные вещества от белого до светло-кремового цвета. В ходе переработки и эксплуатации немного темнеют. В тонком слое прозрачные. При горении имеют запах жженого рога или горелых растений. Немного тяжелее воды.

Основные свойства. Полиамиды – частично кристаллические термопластичные полимеры невысокой молекулярной массы – 8 000 – 25 000. Имеют плотность 1140 - 1170 кг/м 3 и температуру плавления Тm = 215 -290ºС. Отличительные свойства полиамидов – высокая твердость, прочность на изгиб, износоустойчивость, т. е. высокая стойкость к истиранию, устойчивость к действию воды, масел и растворителей, хорошая совместимость с металлами. Большая часть свойств объясняется наличием амидных групп, которые связаны между собой с помощью водородных связей. Ряд свойств полиамидов зависит от их кристаллического устройства, в частности от содержания воды. Полиамиды взаимодействуют с окружающей средой обратимо впитывая влагу, при этом вода собирается в аморфных областях полиамида. Так, например в окружении воздуха, полиамид 6 принимает примерно 2, 5 -3, 5% воды, а полиамид 610 около 0, 5%. Влагопоглощение полиамидов напрямую влияет на их долговечность.

Получение Полиамиды получают поликонденсацией амидов многоосновных кислот с альдегидами, поликонденсацией высших аминокислот или диаминов с дикарбоновыми кислотами, конденсацией капролактама и солей диаминов дикарбоновых кислот и др. Соединение двух аминокислот. Множественная реакция образует длинные цепочки белков

Альдегиды Общая структура α-аминокислот, составляющих белки (кроме пролина). Составные части молекулы аминокислоты - аминогруппа NH 2, карбоксильна группа COOH, радикал (различается у всех α-аминокислот), αатом углерода (в центре).

Применение полиамидов. Благодаря этому полиамиды применяют для производства трущихся деталей (шестерни, подшипники), крепежной фурнитуры (мебельные стяжки, петли, дюбели, полкодержатели, опоры и колесики для мебели небольших размеров) и металлопластовой фурнитуры (мебельные ручки), а также при изготовлении нагруженных деталей офисных кресел. Полиамиды используют для производства износостойких, эластичных волокон, из которых изготовляют прочные ткани для обивки мебели, сетки для стульев, качалок и кресел. На основе полиамидов выпускают клеевые нити, искусственную кожу, меха и ковры.

Клеевые нити применяют для соединения листов натурального шпона "встык". Отдельные листы шпона закрепляют клеевыми нитями швом "зигзаг" Лист шпона Вершины "зигзага", в которых клеевая нить расплавляется и после охлаждения остывает, затвердевает и скрепляет листы шпона.

В машиностроении полиамиды наиболее часто применяются как конструкционный материал и могут быть армированы следующими компонентами: стекловолокно тальк графит масло дисульфид молибдена Полиамид также может быть использован как антикоррозийный материал для защиты металлов и для защиты бетона. В медицинской промышленности полиамидные волокна используются для изготовления протезов, хирургических нитей, искусственных кровеносных сосудов. В текстильной промышленности из полиамида изготавливают нити, ткани. В народном хозяйстве полиамид часто используется в качестве пленки, клеёв. В пищевой промышленности из полиамида производят различные оболочки для колбасных изделий.

Капрон (поли-ε-капроамид, найлон-6, полиамид 6)- синтетическое полиамидное волокно, получаемое из поли-εкапроамида - продукта полимеризации капролактама. Капролактам получают в ходе Бекмановской перегруппировки: Впервые поликапролактам как полимер для формования полиамидного волокна (под названием перлон) был синтезирован в 1938 г. в Германии Паулем Шлаком, работавшим в компании I. G. Farben

Свойства и применение Капрона Капрон или капроновое волокно - бело-прозрачное, очень прочное вещество. Эластичность капрона намного выше шелка. Прочность капрона зависит от технологии и тщательности производства. Капроновая нить диаметром 0, 1 миллиметра выдерживает 0, 55 килограммов. За рубежом синтетическое волокно типа капрон именуется перлон и нейлон. Капрон вырабатывается нескольких сортов; хрустальнопрозрачный капрон более прочен, чем непрозрачный с мутножелтоватым или молочным оттенком. Наряду с высокой прочностью капроновые волокна характеризуются устойчивостью к истиранию, действию многократной деформации (изгибов).

Капроновые волокна не впитывают влагу, поэтому не теряют прочности во влажном состоянии. Но у капронового волокна есть и недостатки. Оно малоустойчиво к действию кислот - макромолекулы капрона подвергаются гидролизу по месту амидных связей. Сравнительно невелика и теплостойкость капрона. При нагревании его прочность снижается, при 215°С происходит плавление. Из капрона изготовляют канаты, рыболовные сети, леску, гитарные струны, фильтровальные материалы, кордную ткань, а также штапельные ткани, чулки и другие бытовые товары. Изделия из капрона, и в сочетании с капроном, широко используются в быту. Из капроновых нитей шьют одежду, которая стоит намного дешевле, чем одежда из натуральных природных материалов. Из кордной ткани делают каркасы авто- и авиапокрышек. Будучи термопластичной, капроновая смола используется и в качестве пластмассы для изготовления деталей машин и механизмов - зубчатых колес, втулок, подшипников и т. п. , отличающихся большой прочностью и износостойкостью.

Полиамид-66 Найло н (найлон-66, полиамид 66 - найлон, nylon; найлон-6, полиамид 6 - капрон) - синтетический полиамид, используемый преимущественно в производстве волокон. Существуют два изомерных вида нейлона: полигексаметиленадипинамид (анид, найлон-66) и поли-ε-капроамид (капрон, найлон-6). Структура найлона

Нейлон-66 синтезируется поликонденсацией адипиновой кислоты и гексаметилендиамина. Для обеспечения стехиометрического отношения реагентов 1: 1, необходимого для получения полимера с максимальной молекулярной массой, используется соль адипиновой кислоты и гексаметилендиамина (АГ-соль):

Адипи новая кислота (гександиовая кислота) НООС(СН 2)4 СООН - двухосновная предельная карбоновая кислота. Гексаметилендиамин NH 2(CH 2)6 NH 2 -

В кристаллических участках макромолекулы нейлонов имеют конформацию плоского зигзага с образованием с соседними молекулами водородных связей между атомами кислорода карбонила и атомами водорода соседних амидных групп. Вследствие этого нейлоны обладают более высокими, по сравнению с полиэфирами и полиалкенами физико-механическими свойствами, более высокой степенью кристалличности (40 -60%) и температурами стеклования и плавления. При повышении степени кристалличности нейлонов их прочностные характеристики улучшаются, такое повышение кристалличности происходит и при холодной вытяжке волокна на 400600%, происходящая при этом ориентация макромолекул в направлении вытяжки ведет к повышению кристалличности и упрочнению волокна в 4 -6 раз. Нейлоны при нагревании на воздухе подвергаются термоокислительной деструкции, ведущей к снижению прочностных характеристик: при выдерживании на воздухе при температурах 100 -120°C предел прочности на растяжение снижается в 5 -10 раз. Деструкция ускоряется под воздействием ультрафиолетового излучения.

Синтез 66 -монополимера (нейлон) впервые был проведён 28 февраля 1935 года У. Карозерсом, главным химиком исследовательской лаборатории американской компании Du. Pont. Широкой общественности об этом было объявлено 27 октября 1938 года. Существует версия, что слово «нейло н» произошло от названий городов Нью -Йорк и Лондон (NYLON = New York + London). Также встречается мнение, что это слово - аббревиатура от New York Lab of Organic Nitrocompounds, однако достоверных сведений об этом нет. В словаре Вебстера сообщается, что это искусственно придуманное слово. В этимологическом словаре Дугласа Харпера указано, что название создано компанией Du. Pont из случайно выбранного родового слога nyl- и окончания on, часто употребляемого в названиях волокон (например, капрон), исходно взятого из английского слова «cotton» («хлопок»).

Как называется реакция, приведенная на слайде?

Реакция поликонденсации тоже приводит к образованию полимеров.

Сравните реакции полимеризации и поликонденсации.

Ответы учеников.

Сходство: исходные вещества низкомолекулярные соединения, продукт полимер.

Различия: продукт только полимер при реакции полимеризации и кроме полимера низкомолекулярное вещество при реакции поликонденсации.

Полимеров, или ВМС, много, необходимо в них ориентироваться.

По какому признаку можно разделить полимеры на слайде?

Ответы – по способу получения. Запись в тетради.

Перед вами клубок шерсти и пластмассовый треугольник, по какому признаку мы разделяем данные полимеры?

Ответ – по происхождению. Запись в тетради.

Посмотрите на данную классификацию, на чем она основана?

Ответ – на отношении полимеров к нагреванию. Запись в тетради.

Все классификации рассмотреть в рамках урока невозможно.

Почему человечество широко применяет полимеры?

Ответы – полимеры имеют полезные свойства.

Свойства у полимеров действительно удивительные:

Способность к деформации,

Плавление, растворение,

Пластификация, наполнение, накопление статического электричества, структурирование, другие.

В настоящее время полимерные материалы находят широкое применение в различных областях медицины.

Сейчас широко ведутся работы по синтезу физиологически активных полимерных лекарственных веществ, полусинтетических гормонов и ферментов, синтетических генов. Большие успехи достигнуты в создании полимерных заменителей плазмы человеческой крови. Синтезированы и с хорошими результатами применяются в клинической практике эквиваленты различных тканей и органов человека: костей, суставов, зубов. Созданы протезы кровеносных сосудов, искусственные клапаны и желудочки сердца. Созданы аппараты: «искусственное сердце-легкое» и «искусственная почка».

Медицинские полимеры и используются для культивирования клеток и тканей, хранения и консервации крови, кроветворной ткани – костного мозга, консервации кожи и многих других органов. На основе синтетических полимеров создаются противовирусные вещества, противораковые препараторы.

Использование медицинских полимеров для изготовления хирургических инструментов и оборудования (шприцы и системы для переливания крови разового использования, бактерицидные пленки, нити, клетки) коренным образом изменило и усовершенствовало технику медицинского обслуживания.

Мы не представляем свою жизнь без волокон (одежда, промышленность) и без пластмасс. Из пластмасс делают:

аудио, видео аксессуары;

канцелярские товары;

настольные игры;

одноразовая посуда;

хозяйственные товары (пакеты, пленки и мешки).

ВМС несут большую опасность , если не знать их свойства. Так как производство полимеров приносит большой доход, то в погоне за прибылью недобросовестные производители могут выпускать некачественную продукцию. В этом случае могут помочь различные журналы, которые начали учить потребителей разбираться в том многообразии товаров, которые предлагает рынок. На телевидении появилась очень интересная передача “Контрольная закупка”. В качестве примера рассказываю о безопасном обращении с пластмассовой посудой. Посуда из полимерных материалов безвредна, если использовать ее по назначению. Обязательно следует обращать внимание на маркировку и рекомендующие надписи типа; “Для пищи”, “Не для пищевых продуктов”, “Для холодной пищи”. Использование посуды не по назначению может вызвать не только изменения вкуса, но даже переход в пищу веществ, опасных для организма. Тарелки, кружки и другая пластмассовая посуда предназначена в основном для кратковременного контакта с пищей, а не для хранения ее, при котором из полимерных материалов могут выделяться нежелательные продукты. Не рекомендуется хранить, например, в полиэтиленовой таре жиры, варенье, вино, квас.

А как же планета?

Если бы удалось собрать в одно место все металлы, выплавляемые за год, то получился бы шар диаметром около 500 м., на втором месте бумажный шарик –450 м., четвертый пластмассовый шар – 400 м. Темпы прироста производства полимеров во всем мире необычайно высоки. Где же в конце концов все это богатство окажется? Ребята дают правильный ответ, что на мусорной свалке. Предлагаю учащимся заглянуть в ведро для мусора. Ставлю на стол ведро, в котором лежат предметы, которые почти ежедневно попадают в него - пакет из-под молока, картофельные очистки, стаканчик из-под сметаны, капроновый чулок, консервная банка, бумага и т.д. Задаю учащимся вопрос: что будет с этим мусором через год, через 10 лет? В результате беседы делаем вывод, что планета замусоривается.

Выход есть – утилизация.

Полиамиды - высокомолекулярные соединения, относящиеся к гетероцепным полимерам, в основной цепи которых содержатся амидные связи, посредством которых соединены между собой мономерные остатки. Примером полиамидов является найлон. Поэтому рассмотрим полиамиды на примерах полимерах и найлона.

Полимеры

Полимеры - химические соединения с высокой мол. массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация полимеров

По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например поливинилхлорид, поликапроамид, целлюлоза).

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами. В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.

Свойства и важнейшие характеристики полимеров

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол - кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.

Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (так называемое сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Материал к уроку химии в 11 классе

УМК О.С. Габриеляна


  • ПОЛИМЕРЫ (от поли... и греч. meros - доля, часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов.
  • Термин «полимеры введен Й. Я. Берцелиусом в 1833.

  • По происхождению полимеры делят на природные , или биополимеры (напр., белки, нуклеиновые кислоты, натуральный каучук), и синтетические (напр., полиэтилен, полиамиды, эпоксидные смолы), получаемые методами полимеризации и поликонденсации. По форме молекул различают линейные, разветвленные и сетчатые полимеры, по природе - органические, элементоорганические, неорганические полимеры.


  • По строению макромолекулы подразделяются на линейные , схематически обозначаемые -А-А-А-А-А-, (например, каучук натуральный); разветвленные , имеющие боковые ответвления (например, амилопектин); и сетчатые или сшитые, если соседние макромолекулы соединены поперечными химическими связями (например, отвержденные эпоксидные смолы). Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

  • Реакцию образования полимера из мономера называют полимеризацией . В процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. Реакция полимеризации не сопровождается отщеплением каких-либо низкомолекулярных побочных продуктов. При полимеризации полимер и мономер характеризуются одинаковым элементным составом.

  • n СН 2 = СН → (- СН 2 – СН-) n

пропилен полипропилен

Выражение в скобках называют Структурным звеном, а число n в формуле полимера – степенью полимеризации.


  • Помимо реакции полимеризации полимеры можно получить поликонденсацией - реакцией, при которой происходит перегруппировка атомов полимеров и выделение из сферы реакции воды или других низкомолекулярных веществ.

  • n С 6 Н 12 О 6 → (- С 6 Н 10 О 5 -) n + Н 2 О

глюкоза полисахарид


  • Полимеры линейные и разветвленные образуют класс термопластических полимеров или термопластов, а пространственные - класс термореактивных полимеров или реактопластов.

Понравилась статья? Поделиться с друзьями: