Планирование эксперимента. Математическое планирование экспериментов Планирование эксперимента учебное пособие

Тема 6 Методы планирования эксперимента .

Для чего необходимо планирование эксперимента?

Как и любое планирование, оно позволяет (1) сократить объем процесса (в данном случае объем эксперимента) и (2) повысить точность получаемых результатов.

В основе методов статистического планирования эксперимента лежит использование упорядоченного плана точек в факторном пространстве называемого матрицей планирования (МП).

Этапы составления плана

I этап .

При составлении любого плана эксперимента первым этапом является ВЫБОР УСЛОВИЙ ЭКСПЕРИМЕНТА , которые включают:

(1) область экспериментирования (общие пределы измерения);

(2) основной уровень исследуемых факторов;

(3) интервал варьирования исследуемых факторов;

(4) точность фиксирования факторов.

(1) При выборе области экспериментирования учитывают:

а) ограничения уровней факторов, обусловленные их физической природой (например: предел прочности материала, температура плавления и т.д.), применяемым оборудованием (предельные значения подачи станка, частот вращения и т.д.), технико-экономическими показателями (соображениями) .

б) имеющуюся априорную информацию, полученную в аналогичных, ранее производимых исследованиях.

(2) Выбор основного уровня исследуемого фактора X 0 i (иначе, нулевой

точки) зависит от решаемой задачи. Если задачей эксперимента является описание процесса (интерполяция), то за нулевую точку принимается середина интервала изменения данного фактора. В задачах оптимизации некоторого параметра нулевую точку нужно располагать как можно ближе к положению, обеспечивающему оптимум параметра, т. е. на основе предварительных опытов выбирается наилучшее значение.

(3) При выборе интервала варьирования уровня фактора (J i) учитываются ограничения “сверху” и “снизу”. Ошибка с которой фиксируется уровень фактора является ограничением “снизу”. Предел области определения - устанавливает верхнюю границу: если J i составляет не более 10% от области определения фактора, его считают узким, не более 30% - средним и в остальных случаях – широким. Как правило, уровни фактора (верхний и нижний) выбирают симметричными относительно нулевой точки. Таким образом, J i – это расстояние между основными уровнями фактора.

При составлении матрицы планирования (МП) записываются кодированные значения фактора. Верхний уровень фактора, равный X 0 +J i обозначается как +1, нижний уровень, равный X 0 -J i обозначается как –1, а основной, (X 0) соответственно приравнивается к нулю. Каждый столбец в МП называется вектор-столбцом, а каждая строка в МП- соответственно вектор-строкой.

(4) Точность фиксирования уровней фактора определяется стабильностью их в ходе эксперимента и точностью приборов. Точность считается высокой, если измерение производится с погрешностью не более 1% , средняя – не более 5% , низкая – более 10% .

II. этап.

Вторым этапом составления плана является ВЫБОР МЕТОДА ПЛАНИРОВАНИЯ , который зависит от: (1) количества регулируемых факторов, (2) задачи эксперимента, (3) априорной информации о существенности вклада каждого фактора, (4) экономических затрат на проведение эксперимента.

Классификация планов (методов планирования)

Планы мoжно классифицировать в зависимости от факторности эксперимента .

1. К планам однофакторного эксперимента относятся :

1.1. Последовательный план (ПП);

1.2. Рандомизированный план(РП);

2. Планы многофакторного эксперимента , цель которого- отыскание модели процесса в виде полинома первой или второй степени называют планами, соответственно первого или второго порядка.

2.1. К планам первого порядка относятся:

2.1.1. Полный факторный план (ПФП);

2.1.2. Дробный факторный план (ДФП);

2.1.3. План случайного баланса (ПСБ).

2.2. К планам второго порядка относятся:

2.2.1. Oртогональный центральный композиционный план (ОЦКП);

2.2.2. Pотатабельный центральный композиционный план (РЦКП).

I. Планы однофакторного эксперимента .

1.1. Последовательный план (ПП)

Суть ПП заключается в том, что после каждого шага (опыта) производится анализ результатов, на основании которого принимается решение о ходе дальнейшей работы.

ПП принимают в случаях : (1) когда эксперимент не воспроизводим (когда образец разрушается в результате эксперимента); (2) когда объект исследования имеет особенности, которые можно обнаружить только при получении данных в регулярной последовательности (Пр. Зависимость: размер детали (у ) / время работы станка (х ). Определение этой зависимости необходимо для установления времени между подналадками оборудования); (3) если продолжительность, стоимость или сложность эксперимента таковы, что рандомизированный план не целесообразен.

1.2. Рандомизированный план (РП)

План эксперимента называется рандомизированным (от англ. random – случайный), когда уровень фактора изменяется случайным образом (принимая то меньшие, то большие значения).

Основная цель рандомизации – сведение эффекта неслучайных факторов к случайной ошибке.

4.7. Экспериментальные планы

Экспериментальный план – это тактика экспериментального исследования, воплощенная в конкретной системе операций планирования эксперимента. Основными критериями классификации планов являются:

Состав участников (индивид или группа);

Количество независимых переменных и их уровней;

Виды шкал представления независимых переменных;

Метод сбора экспериментальных данных;

Место и условия проведения эксперимента;

Особенности организации экспериментального воздействия и способа контроля.

Планы для групп испытуемых и для одного испытуемого. Все экспериментальные планы можно разделить по составу участников на планы для групп испытуемых и планы для одного испытуемого.

Эксперименты с группой испытуемых имеют следующие преимущества: возможность обобщения результатов эксперимента на популяцию; возможность использования схем межгрупповых сравнений; экономия времени; применение методов статистического анализа. К недостаткам данного типа экспериментальных планов можно отнести: влияние индивидуальных различий между людьми на результаты эксперимента; проблему репрезентативности экспериментальной выборки; проблему эквивалентности групп испытуемых.

Эксперименты с одним испытуемым – это частный случай «планов с маленьким N». Дж. Гудвин указывает на следующие причины использования таких планов: потребности в индивидуальной валидности, так как в экспериментах с большим N возникает проблема, когда обобщенные данные не характеризуют ни одного испытуемого. Эксперимент с одним испытуемым проводится также в уникальных случаях, когда в силу ряда причин невозможно привлечь много участников. В этих случаях целью эксперимента является анализ уникальных явлений и индивидуальных характеристик.

Эксперимент с маленьким N, по мнению Д. Мартина, имеет следующие преимущества: отсутствие сложных статистических подсчетов, легкость в интерпретации результатов, возможность изучения уникальных случаев, привлечение одного-двух участников, широкие возможности манипуляции независимыми переменными. Ему свойственны и некоторые недостатки, в частности сложность процедур контроля, затруднение при обобщении результатов; относительная неэкономичность по времени.

Рассмотрим планы для одного испытуемого.

Планирование временных серий. Основным показателем влияния независимой переменной на зависимую при реализации такого плана является изменение характера ответов испытуемого во времени. Простейшая стратегия: схема А – В. Испытуемый первоначально выполняет деятельность в условиях А, а затем в условиях В. Для контроля «эффекта плацебо» применяется схема: А – В – А. («Эффект плацебо» – это реакции испытуемых на «пустые» воздействия, соответствующие реакциям на реальные воздействия.) В данном случае испытуемый не должен заранее знать, какое из условий является «пустым», а какое реальным. Однако эти схемы не учитывают взаимодействия воздействий, поэтому при планировании временных серий, как правило, применяют схемы регулярного чередования (А – В – А – В), позиционного уравнивания (А – В – В – А) или случайного чередования. Применение более «длинных» временных серий увеличивает возможность обнаружения эффекта, но приводит к ряду негативных последствий – утомлению испытуемого, снижению контроля за другими дополнительными переменными и т. п.

План альтернативных воздействий является развитием плана временных серий. Его специфика заключается в том, что воздействия А и В рандомизированно распределяются во времени и предъявляются испытуемому раздельно. Затем сравниваются эффекты от каждого из воздействий.

Реверсивный план применяется для изучения двух альтернативных форм поведения. Первоначально регистрируется базовый уровень проявления обеих форм поведения. Затем предъявляется комплексное воздействие, состоящее из специфического компонента для первой формы поведения и дополнительного для второй. Через определенное время сочетание воздействий видоизменяют. Эффект двух комплексных воздействий оценивается.

План возрастания критериев часто используется в психологии обучения. Суть его состоит в том, что регистрируется изменение поведения испытуемого в ответ на прирост воздействия. При этом следующее воздействие предъявляется лишь после выхода испытуемого на заданный уровень критерия.

При проведении экспериментов с одним испытуемым следует учитывать, что основные артефакты практически неустранимы. Кроме того, в этом случае, как ни в каком другом, проявляется влияние установок экспериментатора и отношений, которые складываются между ним и испытуемым.

Р. Готтсданкер предлагает различать качественные и количественные экспериментальные планы . В качественных планах независимая переменная представлена в номинативной шкале, т. е. в эксперименте используются два или более качественно разных условия.

В количественных экспериментальных планах уровни независимой переменной представлены в интервальных, ранговых или пропорциональных шкалах, т. е. в эксперименте используются уровни выраженности того или иного условия.

Возможна ситуация, когда в факторном эксперименте одна переменная будет представлена в количественном, а другая – в качественном виде. В таком случае план будет комбинированным.

Внутригрупповые и межгрупповые экспериментальные планы. Т.В. Корнилова определяет два типа экспериментальных планов по критерию количества групп и условий проведения эксперимента: внутригрупповые и межгрупповые. К внутригрупповым относятся планы, в которых влияние вариантов независимой переменной и измерение экспериментального эффекта происходят в одной группе. В межгрупповых планах влияние вариантов независимой переменной осуществляется в разных экспериментальных группах.

Преимуществами внутригруппового плана являются: меньшее количество участников, устранение факторов индивидуальных отличий, уменьшение общего времени проведения эксперимента, возможность доказательства статистической значимости экспериментального эффекта. К недостаткам относятся неконстантность условий и проявление «эффекта последовательности».

Преимуществами межгруппового плана являются: отсутствие «эффекта последовательности», возможность получения большего количества данных, сокращение времени участия в эксперименте для каждого испытуемого, уменьшение эффекта выбывания участников эксперимента. Главным недостатком межгруппового плана является неэквивалентность групп.

Планы с одной независимой переменной и факторные планы. По критерию количества экспериментальных воздействий Д. Мартин предлагает различать планы с одной независимой переменной, факторные планы и планы с серией экспериментов. В планах с одной независимой переменной экспериментатор манипулирует одной независимой переменной, которая может иметь неограниченное количество вариантов проявления. В факторных планах (подробно о них см. с. 120) экспериментатор манипулирует двумя и более независимыми переменными, исследует все возможные варианты взаимодействия их разных уровней.

Планы с серией экспериментов проводятся для постепенного исключения конкурирующих гипотез. В конце серии экспериментатор приходит к верификации одной гипотезы.

Доэкспериментальные, квазиэкспериментальные планы и планы истинных экспериментов. Д. Кэмпбелл предложил разделить все экспериментальные планы для групп испытуемых на следующие группы: доэкспериментальные, квазиэкспериментальные и планы истинных экспериментов. В основе этого деления лежит близость реального эксперимента к идеальному. Чем меньше артефактов провоцирует тот или иной план и чем строже контроль дополнительных переменных, тем ближе эксперимент к идеальному. Доэкспериментальные планы менее всего учитывают требования, предъявляемые к идеальному эксперименту. В.Н. Дружинин указывает, что они могут служить лишь иллюстрацией, в практике научных исследований их следует по возможности избегать. Квазиэкспериментальные планы являются попыткой учета реалий жизни при проведении эмпирических исследований, они специально создаются с отступлением от схем истинных экспериментов. Исследователь должен осознавать источники артефактов – внешних дополнительных переменных, которые он не может контролировать. Квазиэкспериментальный план применяется тогда, когда применение лучшего плана невозможно.

Систематизированные признаки доэкспериментальных, квазиэкспериментальных планов и планов истинных экспериментов приводятся в нижеследующей таблице.

При описании экспериментальных планов будем пользоваться символизацией, предложенной Д. Кэмпбеллом: R – рандомизация; X – экспериментальное воздействие; O – тестирование.

К доэксперименталъным планам относятся: 1) исследование единичного случая; 2) план с предварительным и итоговым тестированием одной группы; 3) сравнение статистических групп.

При исследовании единичного случая однократно тестируется одна группа после экспериментального воздействия. Схематично этот план можно записать в виде:

Контроль внешних переменных и независимой переменной полностью отсутствует. В таком эксперименте нет никакого материала для сравнения. Результаты могут быть сопоставлены лишь с обыденными представлениями о реальности, научной информации они не несут.

План с предварительным и итоговым тестированием одной группы часто применяется в социологических, социально-психологических и педагогических исследованиях. Его можно записать в виде:

В этом плане отсутствует контрольная группа, поэтому нельзя утверждать, что изменения зависимой переменной (разница между O1 и O2), регистрируемые в ходе тестирования, вызваны именно изменением независимой переменной. Между начальным и итоговым тестированием могут произойти и другие «фоновые» события, воздействующие на испытуемых вместе с независимой переменной. Этот план не позволяет контролировать также эффект естественного развития и эффект тестирования.

Сравнение статистических групп будет точнее назвать планом для двух неэквивалентных групп с тестированием после воздействия. Он может быть записан в таком виде:

Этот план позволяет учитывать эффект тестирования, благодаря введению контрольной группы контролировать ряд внешних переменных. Однако с его помощью невозможно учесть эффект естественного развития, так как нет материала для сравнения состояния испытуемых на данный момент с их начальным состоянием (предварительное тестирование не проводилось). Для сравнения результатов контрольной и экспериментальной групп используют t-критерий Стьюдента. Однако следует учитывать, что различия в результатах тестирования могут быть обусловлены не экспериментальным воздействием, а различием в составе групп.

Квазиэкспериментальные планы являются своеобразным компромиссом между реальностью и строгими рамками истинных экспериментов. Существуют следующие типы квазиэкспериментальных планов в психологическом исследовании: 1) планы экспериментов для неэквивалентных групп; 2) планы с предварительным и итоговым тестированием различных рандомизированных групп; 3) планы дискретных временных серий.

План эксперимента для неэквивалентных групп направлен на установление причинно-следственной зависимости между переменными, однако в нем отсутствует процедура уравнивания групп (рандомизация). Этот план может быть представлен следующей схемой:

К проведению эксперимента в данном случае привлекаются две реальные группы. Обе группы тестируются. Затем одна группа подвергается экспериментальному воздействию, а другая – нет. Затем обе группы повторно тестируются. Результаты первого и второго тестирования обеих групп сопоставляют, для сравнения используют t-критерий Стьюдента и дисперсионный анализ. Различие O2 и O4 свидетельствует о естественном развитии и фоновом воздействии. Для выявления действия независимой переменной необходимо сравнивать 6(O1 O2) и 6(O3 O4), т. е. величины сдвигов показателей. Значимость различия приростов показателей будет свидетельствовать о влиянии независимой переменной на зависимую. Этот план аналогичен плану истинного эксперимента для двух групп с тестированием до и после воздействия (см. с. 118). Главным источником артефактов является различие в составе групп.

План с предварительным и итоговым тестированием различных рандомизированных групп отличается от плана истинного эксперимента тем, что предварительное тестирование проходит одна группа, а итоговое – эквивалентная группа, которая подверглась воздействию:

Главный недостаток этого квазиэкспериментального плана – невозможность контролировать эффект «фона» – влияние событий, происходящих наряду с экспериментальным воздействием в период между первым и вторым тестированием.

Планы дискретных временных серий подразделяются на несколько видов в зависимости от количества групп (одной или нескольких), а также в зависимости от количества экспериментальных воздействий (одиночного или серии воздействий).

План дискретных временных серий для одной группы испытуемых состоит в том, что первоначально определяется исходный уровень зависимой переменной на группе испытуемых с помощью серии последовательных замеров. Затем применяют экспериментальное воздействие и проводят серию аналогичных замеров. Сравнивают уровни зависимой переменной до и после воздействия. Схема этого плана:

Главный недостаток плана дискретных временных серий в том, что он не дает возможности отделить результат влияния независимой переменной от влияния фоновых событий, которые происходят в течение исследования.

Модификацией этого плана является квазиэксперимент по схеме временных серий, в котором воздействие перед замером чередуется с отсутствием воздействия перед замером. Его схема такова:

ХO1 – O2ХO3 – O4 ХO5

Чередование может быть регулярным или случайным. Этот вариант подходит лишь в том случае, когда эффект воздействия обратим. При обработке данных, полученных в эксперименте, серии разбивают на две последовательности и сравнивают результаты замеров, где было воздействие, с результатами замеров, где оно отсутствовало. Для сравнения данных используется t-критерий Стьюдента с числом степеней свободы n – 2, где n – число ситуаций одного типа.

Планы временных серий часто реализуются на практике. Однако при их применении нередко наблюдается так называемый «эффект Хотторна». Впервые его обнаружили американские ученые в 1939 г., когда проводили исследование на заводе Хотторна в Чикаго. Предполагалось, что изменение системы организации труда позволит повысить его производительность. Однако в ходе эксперимента любые изменения в организации труда приводили к повышению его производительности. В результате оказалось, что само по себе участие в эксперименте повысило мотивацию к труду. Испытуемые поняли, что ими лично интересуются, и стали работать продуктивнее. Чтобы контролировать этот эффект, должна использоваться контрольная группа.

Схема плана временных серий для двух неэквивалентных групп, из которых одна не получает воздействия, выглядит так:

O1O2O3O4O5O6O7O8O9O10

O1O2O3O4O5O6O7O8O9O10

Такой план позволяет контролировать эффект «фона». Обычно он используется исследователями при изучении реальных групп в образовательных учреждениях, клиниках, на производстве.

Еще один специфический план, который нередко используется в психологии, называют экспериментом ex-post-facto. Он часто применяется в социологии, педагогике, а также в нейропсихологии и клинической психологии. Стратегия применения этого плана состоит в следующем. Экспериментатор сам не воздействует на испытуемых. В качестве воздействия выступает некоторое реальное событие из их жизни. Экспериментальная группа состоит из «испытуемых», подвергшихся воздействию, а контрольная группа – из людей, не испытавших его. При этом группы по возможности уравниваются на момент своего состояния до воздействия. Затем проводится тестирование зависимой переменной у представителей экспериментальной и контрольной групп. Данные, полученные в результате тестирования, сопоставляются и делается вывод о влиянии воздействия на дальнейшее поведение испытуемых. Тем самым план ex-post-facto имитирует схему эксперимента для двух групп с их уравниванием и тестированием после воздействия. Его схема такова:

Если удается достичь эквивалентности групп, то этот план становится планом истинного эксперимента. Он реализуется во многих современных исследованиях. Например, при изучении посттравматического стресса, когда люди, перенесшие воздействия природной или техногенной катастрофы, или участники боевых действий тестируются на наличие посттравматического синдрома, их результаты сопоставляются с результатами контрольной группы, что позволяет выявить механизмы возникновения подобных реакций. В нейропсихологии травмы головного мозга, поражения определенных структур, рассматриваемые как «экспериментальное воздействие», предоставляют уникальную возможность для выявления локализации психических функций.

Планы истинных экспериментов для одной независимой переменной отличаются от других следующим:

1) использованием стратегий создания эквивалентных групп (рандомизация);

2) наличием как минимум одной экспериментальной и одной контрольной групп;

3) итоговым тестированием и сравнением результатов групп, получавших и не получавших воздействие.

Рассмотрим подробнее некоторые экспериментальные планы для одной независимой переменной.

План для двух рандомизированных групп с тестированием после воздействия. Его схема выглядит так:

Этот план применяют в том случае, если нет возможности или необходимости проводить предварительное тестирование. При равенстве экспериментальной и контрольной групп данный план является наилучшим, поскольку позволяет контролировать большинство источников артефактов. Отсутствие предварительного тестирования исключает как эффект взаимодействия процедуры тестирования и экспериментального задания, так и сам эффект тестирования. План позволяет контролировать влияние состава групп, стихийного выбывания, влияние фона и естественного развития, взаимодействие состава группы с другими факторами.

В рассмотренном примере использовался один уровень воздействия независимой переменной. Если же она имеет несколько уровней, то количество экспериментальных групп увеличивается до числа уровней независимой переменной.

План для двух рандомизированных групп с предварительным и итоговым тестированием. Схема плана выглядит следующим образом:

R O1 Х O2

Этот план применяется в том случае, если существуют сомнения в результатах рандомизации. Главный источник артефактов – взаимодействие тестирования и экспериментального воздействия. В реальности также приходится сталкиваться с эффектом неодновременности тестирования. Поэтому наилучшим считается проведение тестирования членов экспериментальной и контрольной групп в случайном порядке. Предъявление-непредъявление экспериментального воздействия также лучше проводить в случайном порядке. Д. Кэмпбелл отмечает необходимость контроля «внутригрупповых событий». Данный экспериментальный план хорошо контролирует эффект фона и эффект естественного развития.

При обработке данных обычно используются параметрические критерии t и F (для данных в интервальной шкале). Вычисляют три значения t: 1) между O1 и O2; 2) между O3 и O4; 3) между O2 и O4. Гипотезу о значимости влияния независимой переменной на зависимую можно принять в том случае, если выполняются два условия: 1) различия между O1 и O2 значимы, а между O3 и O4 незначимы и 2) различия между O2 и O4 значимы. Иногда удобнее сравнивать не абсолютные значения, а величины прироста показателей б(1 2) и б (3 4). Эти значения также сравниваются по t-критерию Стьюдента. В случае значимости различий принимается экспериментальная гипотеза о влиянии независимой переменной на зависимую.

План Соломона представляет собой объединение двух предыдущих планов. Для его реализации необходимы две экспериментальные (Э) и две контрольные (К) группы. Его схема выглядит так:

С помощью этого плана можно контролировать эффект взаимодействия предварительного тестирования и эффект экспериментального воздействия. Эффект экспериментального воздействия выявляется при сравнении показателей: O1 и O2; O2 и O4; O5 и O6; O5 и O3. Сравнение O6, O1 и O3 позволяет выявить влияние фактора естественного развития и фоновых воздействий на зависимую переменную.

Теперь рассмотрим план для одной независимой переменной и нескольких групп.

План для трех рандомизированных групп и трех уровней независимой переменной применяется в тех случаях, когда необходимо выявление количественных зависимостей между независимой и зависимой переменными. Его схема выглядит так:

При реализации этого плана каждой группе предъявляется лишь один уровень независимой переменной. При необходимости можно увеличить количество экспериментальных групп в соответствии с количеством уровней независимой переменной. Для обработки данных, полученных с помощью такого экспериментального плана, могут применяться все вышеперечисленные статистические методы.

Факторные экспериментальные планы применяются для проверки сложных гипотез о взаимосвязях между переменными. В факторном эксперименте проверяются, как правило, два типа гипотез: 1) гипотезы о раздельном влиянии каждой из независимых переменных; 2) гипотезы о взаимодействии переменных. Факторный план заключается в том, чтобы все уровни независимых переменных сочетались друг с другом. Число экспериментальных групп при этом равно числу сочетаний.

Факторный план для двух независимых переменных и двух уровней (2 х 2). Это наиболее простой из факторных планов. Его схема выглядит так.



Данный план выявляет эффект воздействия двух независимых переменных на одну зависимую. Экспериментатор сочетает возможные переменные и уровни. Иногда используются четыре независимые рандомизированные экспериментальные группы. Для обработки результатов применяется дисперсионный анализ по Фишеру.

Существуют более сложные версии факторного плана: 3 х 2 и 3 х 3 и т. д. Дополнение каждого уровня независимой переменной увеличивает число экспериментальных групп.

«Латинский квадрат». Является упрощением полного плана для трех независимых переменных, имеющих два и более уровней. Принцип латинского квадрата состоит в том, что два уровня разных переменных встречаются в экспериментальном плане только один раз. Тем самым значительно сокращаются количество групп и экспериментальная выборка в целом.

Например, для трех независимых переменных (L, M, N) с тремя уровнями у каждой (1, 2, 3 и N(A, В, С)) план по методу «латинского квадрата» будет выглядеть так.

В этом случае уровень третьей независимой переменной (А, В, С) встречается в каждой строке и в каждой колонке по одному разу. Комбинируя результаты по строкам, столбцам и уровням, можно выявить влияние каждой из независимых переменных на зависимую, а также степень попарного взаимодействия переменных. Применение латинских букв А, В, С для обозначения уровней третьей переменной традиционно, поэтому метод и получил название «латинский квадрат».

«Греко-латинский квадрат». Этот план применяется в случае, если необходимо исследовать влияние четырех независимых переменных. Он строится на основе латинского квадрата для трех переменных, при этом к каждой латинской группе плана присоединяется греческая буква, обозначающая уровни четвертой переменной. Схема для плана с четырьмя независимыми переменными, каждая из которых имеет три уровня, будет выглядеть так:

Для обработки данных, полученных в плане «греко-латинский квадрат», применяется метод дисперсионного анализа по Фишеру.

Главная проблема, которую позволяют решить факторные планы, – определение взаимодействия двух и более переменных. Эту задачу невозможно решить, применяя несколько обычных экспериментов с одной независимой переменной. В факторном плане вместо попыток «очистить» экспериментальную ситуацию от дополнительных переменных (с угрозой для внешней валидности) экспериментатор приближает ее к реальности, вводя некоторые дополнительные переменные в разряд независимых. При этом анализ связей между изучаемыми признаками позволяет выявить скрытые структурные факторы, от которых зависят параметры измеряемой переменной.

Лекция 1. Вводная. Основные понятия и определения

Под экспериментом будем понимать совокупность операций совершаемых над объектом исследования с целью получения информации о его свойствах. Эксперимент, в котором исследователь по своему усмотрению может изменять условия его проведения, называется активным экспериментом. Если исследователь не может самостоятельно изменять условия его проведения, а лишь регистрирует их, то это пассивный эксперимент.

Важнейшей задачей методов обработки полученной в ходе эксперимента информации является задача построения математической модели изучаемого явления, процесса, объекта. Ее можно использовать и при анализе процессов и при проектировании объектов. Можно получить хорошо аппроксимирующую математическую модель, если целенаправленно применяется активный эксперимент. Другой задачей обработки полученной в ходе эксперимента информации является задача оптимизации, т.е. нахождения такой комбинации влияющих независимых переменных, при которой выбранный показатель оптимальности принимает экстремальное значение.

Опыт – это отдельная экспериментальная часть.

План эксперимента – совокупность данных определяющих число, условия и порядок проведения опытов.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Пусть интересующее нас свойство (Y) объекта зависит от нескольких (n) независимых переменных (Х1, Х2, …, Хn) и мы хотим выяснить характер этой зависимости - Y=F(Х1, Х2, …, Хn), о которой мы имеем лишь общее представление. Величина Y – называется “отклик”, а сама зависимость Y=F(Х1,Х2, …, Хn) – “функция отклика”.

Отклик должен быть определен количественно. Однако могут встречаться и качественные признаки Y. В этом случае возможно применение рангового подхода. Пример рангового подхода - оценка на экзамене, когда одним числом оценивается сложный комплекс полученных сведений о знаниях студента.

Независимые переменные Х1, Х2, …, Хn – иначе факторы, также должны иметь количественную оценку. Если используются качественные факторы, то каждому их уровню должно быть присвоено какое-либо число. Важно выбирать в качестве факторов лишь независимые переменные, т.е. только те которые можно изменять, не затрагивая другие факторы. Факторы должны быть однозначными. Для построения эффективной математической модели целесообразно провести предварительный анализ значимости факторов (степени влияния на функцию), их ранжирование и исключить малозначащие факторы.

Диапазоны изменения факторов задают область определения Y. Если принять, что каждому фактору соответствует координатная ось, то полученное пространство называется факторным пространством. При n=2 область определения Y представляется собой прямоугольник, при n=3 – куб, при n >3 - гиперкуб.

При выборе диапазонов изменения факторов нужно учитывать их совместимость, т.е. контролировать, чтобы в этих диапазонах любые сочетания факторов были бы реализуемы в опытах и не приводили бы к абсурду. Для каждого из факторов указывают граничные значения

, i=1,... n.

Регрессионный анализ функции отклика предназначен для получения ее математической модели в виде уравнения регрессии

,

где В1, …, Вm – некоторые коэффициенты; е – погрешность.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

планирование при изучении динамических процессов и т.д.

Инициатором применения планирования эксперимента является Рональд А. Фишер, другой автор известных первых работ – Френк Йетс. Далее идеи планирования эксперимента формировались в трудах Дж. Бокса, Дж. Кифера. В нашей стране - в трудах Г.К. Круга, Е.В. Маркова и др.

В настоящее время методы планирования эксперимента заложены в специализированных пакетах, широко представленных на рынке программных продуктов, например: StatGrapfics, Statistica, SPSS, SYSTAT и др.

Представление результатов экспериментов

При использовании методов планирования эксперимента необходимо найти ответы на 4 вопроса:

Какие сочетания факторов и сколько таких сочетаний необходимо взять для определения функции отклика?

Как найти коэффициенты В0, В1, …, Bm?

Как оценить точность представления функции отклика?

Как использовать полученное представление для поиска оптимальных значений Y?

Геометрическое представление функции отклика в факторном пространстве Х1, Х2, …, Хn называется поверхностью отклика (рис. 1).


Рис. 1. Поверхность отклика

Если исследуется влияние на Y лишь одного фактора Х1, то нахождение функции отклика - достаточно простая задача. Задавшись несколькими значениями этого фактора, в результате опытов получаем соответствующие значения Y и график Y =F(X) (рис. 2).

Рис. 2. Построение функции отклика одной переменной по опытным данным

По его виду можно подобрать математическое выражение функции отклика. Если мы не уверены, что опыты хорошо воспроизводятся, то обычно опыты повторяют несколько раз и получают зависимость с учетом разброса опытных данных.

Если факторов два, то необходимо провести опыты при разных соотношениях этих факторов. Полученную функцию отклика в 3х-мерном пространстве (рис. 1) можно анализировать, проводя ряд сечений с фиксированными значениями одного из факторов (рис. 3). Вычлененные графики сечений можно аппроксимировать совокупностью математических выражений.


Рис. 3. Сечения поверхности отклика при фиксированных откликах (а) и переменных (б,в).

При трех и более факторах задача становится практически неразрешимой. Если и будут найдены решения, то использовать совокупность выражений достаточно трудно, а часто и не реально.

Например, пусть необходимо исследовать влияние U, f и Rr на Мп и P2 асинхронного двигателя (АД) (рис. 4).

Рис. 4. Исследование влияния U, f и Rr на Мп и P2 АД

Если в диапазоне изменения каждого фактора взять хотя бы по пять точек

то для того чтобы выполнить опыты при всех возможных сочетаниях значений факторов (их три) необходимо выполнить 53=125 опытов и сформировать по 52=25 кривых для каждой из двух функций отклика. Если мы хотим хотя бы продублировать опыты чтобы снизить погрешность, то число опытов пропорционально возрастает, поэтому произвольное выполнение опытов при числе факторов более двух и использование их результатов - практически нереально.


Лекция 2. Разложение функции отклика в степенной ряд, кодирование факторов

Если заранее не известно аналитическое выражение функции отклика, то можно рассматривать не саму функцию, а ее разложение, например в степенной ряд в виде полинома

Y=В0 + B1Х1 + … + BnХn + В12Х1Х2 + … Вnn-1ХnХn-1 + В11Х12 + … + ВnnXn2 +….

Разложение в степенной ряд функции возможно в том случае, если сама функция является непрерывной и гладкой. На практике обычно ограничиваются числом членов степенного ряда и аппроксимируют функцию полиномом некоторой степени.

Факторы могут иметь разные размерности (А, В, Вт, об/мин) и резко отличаться количественно. В теории планирования эксперимента используют кодирование факторов.

Рис. 5. Пространство кодированных факторов

Эта операция заключается в выборе нового масштаба для кодированных факторов (рис. 5), причем такого, чтобы минимальное значение кодированных факторов соответствовало “-1”, а максимальное значение “+1”, а также в переносе начала координат в точку с координатами Х1ср, Х2ср, …, Хnср

.

Задачи планирования эксперимента (ПЭ). Основные понятия ПЭ. Планирование эксперимента как метод получения функции связи. Полный факторный эксперимент (ПФЭ). Статистическая обработка результатов ПФЭ. Оптимизация РЭС методом крутого восхождения. Оптимизация РЭС симплексным методом.

Понятие планирования эксперимента(вопр.25)

Методы планирования эксперимента позволяют решать задачи выделения критичных первичных параметров (отсеивающие эксперименты: однофакторный эксперимент, метод случайного баланса), получения математического описания функции связи (ПФЭ), оптимизации РЭС (метод крутого восхождения и симплексный метод).

Выбранный критерий оптимизации должен отвечать ряду требований.

ПФЭ проводится по определенному плану (матрице ПФЭ). Для сокращения объема эксперимента используют дробные реплики.

Статистическая обработка результатов ПФЭ содержит проверку воспроизводимости опыта, оценку значимости коэффициентов модели, проверку адекватности модели.

Следует рассмотреть особенности метода крутого восхождения, симплексного метода оптимизации и последовательность проведения эксперимента для каждого из них.

Мысль о том, что эксперимент можно планировать, восходит к глубокой древности. Наш далекий предок, убедившийся, что острым камнем можно убить даже мамонта, несомненно выдвигал гипотезы , которые после целенаправленной экспериментальной проверки привели к созданию копья, дротика, а затем и лука со стрелами. Он, однако, не пользовался статистическими методами, поэтому остается непонятным, как он вообще выжил и обеспечил тем самым наше существование .

В конце 20-х г.г. XX века Рональд Фишер впервые показал целесообразность одновременного варьирования всеми факторами.

Идея метода Бокса-Уилсона проста: экспериментатору предлагается ставить последовательно небольшие серии опытов , в каждой из которых одновременно изменяются по определенным правилам все факторы. Серии организуются таким образом, чтобы после математической обработки предыдущей можно было выбрать условия проведения (т. е. спланировать) следующую серию. Так последовательно шаг за шагом достигается область оптимума . Применение ПЭ делает поведение экспериментатора целенаправленным и организованным, повышает производительность труда и надежность результатов.

ПЭ позволяет:

– сократить количество опытов;

– найти оптимум;

– получить количественные оценки влияния факторов;

– определить ошибки.

Планирование эксперимента (ПЭ) по ГОСТ 24026–80 – выбор плана эксперимента, удовлетворяющего заданным требованиям. Иначе, ПЭ – научная дисциплина, занимающаяся разработкой и изучением оптимальных программ проведения экспериментальных исследований.

План эксперимента – совокупность данных, определяющих количество, условия и порядок реализации опытов.

В ПЭ вводится понятие объекта исследования – системы, которая определенным образом реагирует на интересующее исследователя возмущение.

В проектировании ЭС объектом исследования может быть любое РЭУ (рисунок 42).

Рисунок 42 – Объект исследования

Объект исследования должен отвечать двум основным требованиям:

– воспроизводимость (повторяемость опытов);

– управляемость (условие проведения активного эксперимента заключающееся в возможности установки требуемых значений факторов и поддержании их на этом уровне).

Применение методов ПЭ для исследования РЭС основывается на том, что объект исследования (РЭС) можно представит кибернетической моделью – «черным ящиком» (см. рисунок 2), для которого может быть записана функция связи (см. формулу 1.1).

Для объекта исследования (усилителя на рисунке 42) формула 1.1 имеет вид:
,

где
,
,
,…,
.

В ПЭ функция связи или математическая модель объекта исследования – численные характеристики целей исследования (выходы «черного ящика»), выходные параметры РЭУ, параметры оптимизации.

Состояние «черного ящика» определяется набором факторов, переменных величин, влияющих на значение выходного параметра.

По ГОСТ 24026–80 фактор – переменная величина, по предположению влияющая на результат эксперимента.

Для применения методов ПЭ фактор должен быть:

– управляемым (выбрав нужное значение фактора, его можно установить и поддерживать постоянным в течение эксперимента);

– однозначным;

– независимым (не быть функцией другого фактора);

– совместимым в совокупности с другими факторами (т. е. все комбинации факторов осуществимы);

– количественным;

– точность установки (измерения) значения фактора должна быть высока.

Каждый фактор в проводимом эксперименте может принимать одно или несколько значений – уровни факторов. По ГОСТ 24026–80 уровень фактора – фиксированное значение фактора относительно начала отсчета. Может оказаться, что фактор способен принимать бесконечно много значений – непрерывный ряд. Практически принимается, что фактор имеет определенное количество дискретных уровней.

Фиксированный набор уровней факторов определяет одно из возможных состояний «черного ящика» – условия проведения одного опыта.

Если перебрать все возможные наборы уровней факторов, то получим полное множество различных состояний «черного ящика» – ,

где p – количество уровней,

n – количество факторов.

Если эксперимент проводится для 2-х факторов на 2-х уровнях варьирования, то имеем 2 2 = 4 состояния;

для 3-х факторов на 2-х уровнях – 2 3 = 8;

для 3-х факторов на 3-х уровнях – 3 3 = 27;

для 5-ти факторов на 5-ти уровнях – 5 5 = 3125 состояний «черного ящика» или опытов.

В ПЭ вводится понятие «факторное пространство». Факторным называется пространство , координатные оси которого соответствуют значениям факторов. Для «черного ящика» с двумя факторами x 1 , x 2 можно геометрически представить факторное пространство в виде рисунка 43. Здесь факторы изменяются (варьируются) на 2-х уровнях.

Для уменьшения количества опытов необходимо отказаться от экспериментов, которые содержат все возможные опыты. На вопрос: «Сколько опытов надо включить в эксперимент?» дают ответ методы ПЭ.

Известно, что минимальное количество опытов имеем при 2-х уровневом варьировании.

Итак, количество опытов 2 n .

Количество факторов n , участвующих в эксперименте, определяется с помощью отсеивающих экспериментов (однофакторного эксперимента, метода случайного баланса .

Рисунок 43 – Поверхность отклика

Так как каждому набору значений факторов соответствует некоторое (определенное) значение параметра выходного параметра y (параметра оптимизации), то имеем некоторую геометрическую поверхность отклика – геометрическое представление функции отклика.

Функция отклика – зависимость математического ожидания отклика от факторов.

Отклик – наблюдаемая случайная переменная, по предположению зависящая от факторов.

Математическое описание поверхности отклика (математическая модель) – уравнение, связывающее параметр оптимизации y с факторами (уравнение связи, функция отклика, формула 1.1). В ПЭ принимаются следующие предположения о функции отклика (поверхности отклика):

– поверхность отклика – гладкая, непрерывная функция,

– функция имеет единственный экстремум.

Планирование эксперимента как метод получения функции связи(вопр.27)

Итак, вопрос о минимизации количества опытов связан с выбором количества уровней варьирования факторов p . В ПЭ принимают p =2, при этом количество опытов N = 2 n .

При выборе подобласти для ПЭ проходят два этапа:

– выбор основного уровня фактора (x i 0);

– выбор интервала варьирования (λ i ).

Введем обозначения:


–натуральное значение основного уровня i - го фактора (базовое значение, базовый уровень),

i – номер фактора.

Пример, если R 1 = 10 кОм (см. рисунок 42), то
кОм,

для R 2 = 3кОм –
кОм и т.д.;


–натуральное значение верхнего уровня фактора, которое определяется по формуле x imax = x i 0 + λ i ,

где – натуральное значение интервала варьирования i - го фактора.

В примере (см. рисунок 42) принимается = 20 кОм, тогда

x 1 max = 120 кОМ;


–натуральное значение нижнего уровня фактора, которое определяется по формуле x imin = x i 0 - λ I , в нашем примере x 1 min = 80 кОм.

На величину интервала варьирования накладываются естественные ограничения:

– интервал варьирования должен быть не меньше ошибки измерения фактора;

– интервал варьирования должен быть на больше пределов области определения фактора .

Выбор интервала варьирования неформализуемый этап, на котором используется следующая априорная информация:

– высокая точность установки значений факторов;

– предположение о кривизне поверхности отклика;

– диапазон возможного изменения факторов.

Для РЭС принимают = (0,1,…,0,3) x i 0 .

В примере (см. рисунок 42) подсчитаем значения трех факторов при заданном базовом уровне (x i 0 ) и интервале варьирования ().

Таблица 3.1 – Значения факторов

Параметр

Номинальное значение
, кОм

Интервал

, кОм

, кОм

, кОм

В ПЭ используются не натуральные, а кодированные значения факторов.

Кодирование факторов (по ГОСТ 24026–80 – «нормализация факторов») проводится по формуле:

Тогда если x 1 = x 1 max , то имеем x i =+1, если x 1 = x 1 min , – x i = –1, x i – кодированное значение фактора.

В самом простом случае ПЭ позволяет получить математическое описание функции связи (математическую модель объекта исследования – РЭУ) в виде неполного квадратичного полинома:

.

При этом осуществляется варьирование на двух уровнях (p =2), и минимальное количество опытов равно N =2 n , где n – количество наиболее влияющих факторов, включенных в эксперимент после проведения отсеивающих экспериментов.

Эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом (ПФЭ).

ПФЭ проводится по плану, который называется матрицей ПФЭ, или матрицей плана (таблицы 3.2 и 3.3).

Матрицей плана называют стандартную форму записи условий проведения экспериментов в виде прямоугольной таблицы, стоки которой отвечают опытам, столбцы – факторам.

Таблица 3.2 – Матрица ПФЭ для двух факторов

y j

y 1

y 2

y 3

y 4

В матрице ПФЭ знак ”–” (минус) соответствует ”+1”, а ”+” (плюс) ”соответствует ”–1”.

В матрице ПФЭ для двух факторов (n = 2) (см. таблицу 3.2) количество уровней варьирования – p = 2, количество опытов N = 2 2 = 4.

Таблица 3.3 – Матрица ПФЭ для трех факторов

y j

В матрице ПФЭ для трех факторов (n = 3) (см. таблицу 3.3) количество уровней варьирования – p = 2, количество опытов N = 2 3 = 8.

В соответствии с планом проводится ПФЭ. Для примера на рисунке 42 принимаем n =3 и реализуем матрицу ПФЭ по таблице 3.3. Для этого:

x 1 , x 2 ,… x n на уровни по первой строке матрицы (см. таблицу 3.3) (–1, –1,…,–1);

– измеряют первое значение выходного параметра y 1 ;

– устанавливают значения факторов x 1 , x 2 ,… x n на уровни по второй строке матрицы (см. таблицу 3.3) (+1, –1,…,–1);

– измеряют второе значение выходного параметра y 2 , и так далее до последнего опыта N (y n ).

Каждый эксперимент содержит элемент неопределенности в силу ограниченности экспериментального материала. Постановка повторных (параллельных) опытов может не дать совпадающих результатов из-за ошибки воспроизводимости.

Если предположить, что закон распределения случайной величины y j – нормальный, то можно найти ее среднее значение при повторных опытах (по каждой строке матрицы).

Статистическая проверка гипотез

I гипотеза – о воспроизводимости опыта.

Для проверки этой гипотезы проводят серию повторных (параллельных) опытов (дублирование опытов по каждой строке матрицы). Вычисляют среднее значение выходного параметра

,

где l – номер повторного опыта,

–количество повторных, (параллельных) опытов.

Можно вычислить дисперсию каждого - го опыта (по каждой строке матрицы):

.

Дисперсия эксперимента определяется в результате усреднения дисперсий всех опытов:

.

Формулу можно применять, если дисперсии однородны, т. е. нет дисперсий больше остальных.

Гипотеза о равенстве (однородности) дисперсий проверяется по G - критерию Кохрена:

.

По таблице для степеней свободы

,
находят
.

Если
, то гипотеза об однородности дисперсий верна, опыт воспроизводим. Следовательно дисперсии можно усреднять, можно оценить дисперсию эксперимента , но для определенного уровня значимостиq .

Уровень значимости q – вероятность совершения ошибки (отклонение верной гипотезы или принятие неверной гипотезы).

Опыт может быть невоспроизводим при:

– наличии неуправляемых, неконтролируемых факторов;

– дрейфе фактора (изменении во времени);

– корреляции факторов.

Вычислив коэффициенты модели по формулам

,

для
,

для (
), проверяютгипотезу II – значимости коэффициентов по t - критерию Стьюдента.

.

По таблице находим
для
– числа степеней свободы и уровня значимости q . Количество дублируемых опытов (k ) в общем случае равно N .

Если
, то коэффициенты модели значимы.

Если
, то коэффициенты модели незначимы, т.е.
.

Статистическая незначимость коэффициентов модели b i может быть обусловлена следующими причинами:

– уровень базового значения фактора x i 0 близок к точке частного экстремума по переменной x i ;

– интервал варьирования мал;

– фактор x i не влияет на выходной параметр y (ошибочно включен в эксперимент);

– велика ошибка эксперимента из-за наличия неуправляемых факторов.

Запишем модель только со значимыми коэффициентами:

III гипотеза – адекватности модели.

Проверяется гипотеза о равенстве (однородности) двух дисперсий. Подсчитывается дисперсия адекватности по формуле:

,

где d количество значимых коэффициентов модели;

–рассчитанное по модели значение выходного параметра. Для вычисления x i и x ih соответствующие первой строке матрицы. Для вычисления подставляют в модель со значимыми коэффициентами значенияx i и x ih соответствующие второй строке матрицы и т. д.

Модель адекватна результатам эксперимента, если выполняется условие

.

–определяется по таблице для
,
и уровня значимостиq .

Модель неадекватна результатам эксперимента если:

– не подходит форма аппроксимирующего полинома;

– большой интервал варьирования;

– велика ошибка эксперимента из-за наличия неуправляемых факторов или не включены в эксперимент значимые факторы.

Планирование экстремальных экспериментов

Метод крутого восхождения

Объект исследования – РЭС: усилитель, генератор, источник питания.

В качестве примера принимаем усилитель (рисунок 42).

Процедура метода крутого восхождения(вопр.30)

1 С центром в исходной точке (базовой, нулевой)
проводим ПФЭ для этого:

а) определяем интервал варьирования по каждому фактору и вычисляем уровни варьирования факторов (см. таблица 3.1);

б) строим матрицу ПФЭ N =2 n (см. таблицу 3.3);

в) проводим ПФЭ и измеряем значения выходного параметра y j ;

г) проводим статистическую обработку результатов эксперимента (проверяем I гипотезу о воспроизводимости опыта);

д) вычисляем линейные коэффициенты модели b 0 , b 1 , b 2 , b 3 и записываем уравнение в виде линейного полинома .

Например

Проверяем значимость коэффициентов модели и адекватность модели.

2 Записываем градиент функции отклика:

Для приведенного примера: .

3 Поставим задачу нахождения
.

Вычисляем произведение
по каждому фактору, где
– относительная величина интервала варьирования (таблица 3.4).

Таблица 3.4 – Параметры для проведения метода крутого восхождения

Параметр

b i

b i λ i

λ i кв

Округл. λ i кв

, кОм

4 Находим
и определяем базовыйi -й фактор с
.

В примере базовый фактор .

Для базового фактора принимаем шаг крутого восхождения
.

5 Вычисляем шаг крутого восхождения по остальным факторам по формуле

,

в числителе b i берется со своим знаком.

;

.

Округляем
.

Переведем относительную величину шага крутого восхождения в натуральное значение:

.

6 «Идем» в направлении максимума (экстремума) по градиенту.

Для этого нужно провести опыты в новых точках плана.

Сначала проводим «мысленные» опыты. «Мысленные» опыты заключаются в вычислении «предсказанных» значений выходного параметра
в определенных точках
факторного пространства.

Для этого:

а) подсчитываем значения факторов в «мысленных» опытах по формуле

,

где h = 1, 2, …, f –номер шага крутого восхождения (таблица 3.5);

Таблица 3.5 – «Шаги» крутого восхождения

N + h

Номер «шага» (h )

б) кодируем значения факторов для «мысленных» опытов и заносим в таблицу 3.6:

;

;

;

;

;

;

;

;

;

;

Таблица 3.6 – Значения кодированных факторов

N + h

x 2

в) подставляя кодированные значения факторов в уравнение

,

вычисляем выходной параметр
(,не вычисляют, они есть в ПФЭ).

Подсчитываем , , для модели примера:

7 Сравниваем результаты «мысленных» опытов с результатами эксперимента.

Выбираем
, соответствующее (N + h ) «мысленному» опыту.

Проверяем на объекте исследования (усилителе)
(точку с параметрами
).

Принимаем условия (N + h )-го опыта за центр нового ПФЭ (базовая точка).

Например, для
=
кОм;
кОм;
кОм.

8 Проводим ПФЭ и статистическую обработку результатов. Находим новую модель (с другими коэффициентами) и повторяем движение к оптимуму.

Так как каждый цикл приближает нас к оптимуму, нужно уменьшить шаг
, или 0,01.

Движение к оптимуму прекращают, когда все коэффициенты модели окажутся
.

Симплексный метод оптимизации(вопр.31)

Основной особенностью симплексного метода поиска экстремума является совмещение процессов изучения поверхности отклика и перемещения по ней. Это достигается тем, что эксперименты ставятся только в точках факторного пространства, соответствующих вершинам симплекса.

В основу плана положен не гиперкуб, используемый для ПФЭ, а симплекс – простейшая геометрическая фигура, при заданном количестве факторов.

Что такое симплекс?

n -мерный симплекс – это выпуклая фигура, образованная (n + 1)-й точками (вершинами), не принадлежащими одновременно ни одному (n 1)-мерному подпространству n -мерного пространства (X n ).

Для двух факторов x 1 и x 2 (n =2) двумерный симплекс имеет вид треугольника на плоскости (рисунок 44).

Рисунок 44 – Двумерный симплекс с тремя вершинами

Для трех факторов x 1 , x 2 и x 3 (n =3) трехмерный симплекс имеет вид треугольной пирамиды (рисунок 45).

Рисунок 45 – Трехмерный симплекс с четырьмя вершинами

Для одного фактора x 1 (n =1) одномерный симплекс имеет вид отрезка на прямой (рисунок 46).

Рисунок 46 – Одномерный симплекс с двумя вершинами

Использование симплекса основано на его свойстве, которое заключается в том, что отбросив одну из вершин с худшим результатом и используя оставшуюся грань, можно получить новый симплекс, добавив одну точку, зеркальную относительно отброшенной. В вершинах симплекса ставят эксперимент, затем точку с минимальным значением выходного параметра (y j ) отбрасывают и строят новый симплекс с новой вершиной – зеркальным отображением отброшенной. Формируется цепочка симплексов, перемещающихся по поверхности отклика в область экстремума (рисунок 47).

Рисунок 47– Движение к оптимуму по поверхности отклика

Для упрощения вычислений принимают условие, что все ребра симплекса равны.

Если одну из вершин симплекса поместить в начало координат, а остальные расположить так, чтобы ребра, выходящие из этой вершины образовывали одинаковые углы с соответствующими осями координат (рисунок 48), то координаты вершин симплекса могут быть представлены матрицей.

Рисунок 48 – Двумерный симплекс с вершиной в начале координат

Матрица координат вершин многомерного симплекса

Если расстояние между вершинами равно 1, то

;

.

Процедура последовательного симплекса

1 Пусть нужно найти
,

2 Задается шаг варьирования по каждому фактору x i . Пример в таблице 3.7.

Таблица 3.7– Значения факторов для первоначального симплекса

Параметр

x i

x 2

x 3

3 Задается размер симплекса (расстояние между вершинами)
регулярный симплекс.

4 Обозначаются вершины симплекса С j , где j – номер вершины. В примере j =4.

5 Производится ориентация первоначального симплекса. Для этого одну из вершин начального симплекса (С j 0 ) помещают в начало координат. А именно, за нулевую точку начального симплекса принимают номинальные значения факторов.

Строится матрица координат вершин симплекса с первой вершиной в начале координат и значения координат вершин заносятся в таблицу (таблица 3.8).

Таблица 3.8 – Координаты вершин симплекса

Координаты вершин

x i

x n

Вычисляют координаты остальных вершин начального симплекса (С j 0 ):

Результаты вычислений заносят в таблицу (таблица 3.9).

Таблица 3.9 – Координаты вершин и результаты эксперимента

симплекса

(С j0 )

Координаты вершин

y j

x 11 = x 10

x 21 = x 20

x 31 = x 30

y 2

С j *

x 1 j *

x 2 j *

x 3 j *

y j *

Значения координат вершин вычисляются по формулам. Для примера n =3 имеем:

;
;
;

;
;
;

;
;
.

6 Реализуется эксперимент в вершинах симплекса.

Для этого устанавливают значения факторов, соответствующие первой вершине начального симплекса С 10 , и измеряют значения выходного параметра у 1 . Устанавливают значения факторов, соответствующие второй вершине С 20 , и измеряют у 2 .

Рассчитанные для примера значения факторов, соответствующие координатам вершин, приводятся в таблице 3.10.

Таблица 3.10 – Значения факторов в вершинах симплекса

симплекса

(С j0 )

Координаты вершин

y j

y 1 (5В)

y 2 (6В)

y 3 (4 В)

y 4 (8В)

y 3 *(9В)

y 1 *(5В)

Расчет координат вершин для n =3:

,

С 20 х 12 = 10+0,95∙2=11,9 кОм;

х 22 = 3,0+0,24∙0,6=3,144 кОм;

х 32 = 100+0,24∙20=104,8 кОм;

С 30 х 13 = 10+0,24∙2=10,48 кОм;

х 23 = 3,0+0,95∙0,6=3,57 кОм;

х 33 = 100+0,24∙20=104,8 кОм;

С 40 х 14 = 10+0,24∙2=10,48 кОм;

х 24 = 3,0+0,24∙0,6=3,144 кОм;

х 34 = 100+0,95∙20=119 кОм.

7 Сравнивают значения выходного параметра и отбрасывают вершину, соответствующую минимальному значению y .

8 Вычисляют координаты новой вершины зеркального отображения наихудшей точки («звездной точки») по формуле

где – обозначение координатыj -ой вершины (точки), i =1,2,…,n – номер фактора, j =1,2,…, (n +1) – номер вершины симплекса.

В примере
В – минимальное значение, следовательно, зеркальная точка будет
. Для нее координаты вершины вычисляются как:

9 Проводят эксперимент в новой вершине С 3 * нового симплекса (С 10 , С 20 , С 3 *, С y 3 *.

10 Сравнивают значения выходного параметра нового симплекса (y 1 , y 2 , y 3 *, у 4) и отбрасывают вершины с минимальным y (например y 1 =5В). Строим новый симплекс с новой вершиной С 1 *.

Для этого вычисляют координаты вершины:

Снова проводят эксперимент в новой вершине С * 1 нового симплекса (С 1 *, С 20 , С 3 *, С 40) и измеряют значение выходного параметра y 1 *.

Сравниваем точки с выходными параметрами y 1 *=5, y 2 =6, y 3 * =9, y 4 =8. Отбрасываем вершину с минимальным y 1 *=5. И снова определяем новую «звездную точку».

Движение к оптимуму прекращают, если симплекс начинает вращение, т.е. одна и та же вершина встречается более чем в (n +1) последовательных симплексах.

11 В завершение проводят ПФЭ и статистическую обработку результатов. Находят модель. Движение к оптимуму прекращают, когда все коэффициенты модели окажутся
.

Техническое задание (ТЗ , техзадание )(вопр.8) - исходный документ для проектирования сооружения или промышленного комплекса, конструирования технического устройства (прибора, машины, системы управления и т. д.), разработки информационных систем, стандартов либо проведения научно-исследовательских работ (НИР).

ТЗ содержит основные технические требования, предъявляемые к сооружению, изделию или услуге и исходные данные для разработки; в ТЗ указываются назначение объекта, область его применения, стадии разработки конструкторской (проектной, технологической, программной и т.п.) документации, её состав, сроки исполнения и т. д., а также особые требования, обусловленные спецификой самого объекта либо условиями его эксплуатации. Как правило, ТЗ составляют на основе анализа результатов предварительных исследований, расчётов и моделирования.

Как инструмент коммуникации в связке общения заказчик-исполнитель, техническое задание позволяет:

    обеим сторонам

    • представить готовый продукт

      выполнить попунктную проверку готового продукта (приёмочное тестирование - проведение испытаний )

      уменьшить число ошибок, связанных с изменением требований в результате их неполноты или ошибочности (на всех стадиях и этапах создания, за исключением испытаний )

    заказчику

    • осознать, что именно ему нужно

      требовать от исполнителя соответствия продукта всем условиям, оговорённым в ТЗ

    исполнителю

    • понять суть задачи, показать заказчику «технический облик» будущего изделия, программного изделия или автоматизированной системы

      спланировать выполнение проекта и работать по намеченному плану

      отказаться от выполнения работ, не указанных в ТЗ

Техническое задание - исходный документ определяющий порядок и условия проведения работ по Договору, содержащий цель, задачи, принципы выполнения, ожидаемые результаты и сроки выполнения работ.

Техническое задание является основополагающим документом всего проекта и всех взамоотношений заказчика и разработчика. Корректное ТЗ, написанное и согласованное между всеми заинтересованными и ответсвенными лицами является залогом успешной реализации проекта.

Вопр 9.

Стадия разработки

Этапы выполнения работ

Техническое предложение

Подбор материалов. Разработка технического предложения с присвоением документам литеры «П». Рассмотрение и утверждение технического предложения

Эскизный проект

Разработка эскизного проекта с присвоением документам литеры «Э». Изготовление и испытание макетов (при необходимости) Рассмотрение и утверждение эскизного проекта.

Технический проект

Разработка технического проекта с присвоением документам литеры «Т». Изготовление и испытание макетов (при необходимости). Рассмотрение и утверждение технического проекта.

Рабочая конструкторская документация: а) опытного образца (опытной партии) изделия, предназначенного для серийного (массового) или единичного производства (кроме разового изготовления)

Разработка конструкторской документации, предназначенной для изготовления и испытания опытного образца (опытной партии), без присвоения литеры. Изготовление и предварительные испытания опытного образца (опытной партии). Корректировка конструкторской документации по результатам изготовления и предварительных испытаний опытного образца (опытной партии) с присвоением документам литеры «О». Приемочные испытания опытного образца (опытной партии). Корректировка конструкторской документации по результатам приемочных испытаний опытного образца (опытной партии) с присвоением документам литеры «О 1 «. Для изделия, разрабатываемого по заказу Министерства обороны, при необходимости, - повторное изготовление и испытания опытного образца (опытной партии) по документации с литерой «О 1 « и корректировка конструкторских документов с присвоением им литеры «О 2 «.

б) серийного (массового) производства

Изготовление и испытание установочной серии по документации с литерой «О 1 « (или «О 2 «). Корректировка конструкторской документации по результатам изготовления и испытания установочной серии, а также оснащения технологического процесса изготовления изделия, с присвоением конструкторским документам литеры «А». Для изделия, разрабатываемого по заказу Министерства обороны, при необходимости, - изготовление и испытание головной (контрольной) серии по документации с литерой «А» и соответствующая корректировка документов с присвоением им литеры «Б»

Обязательность выполнения стадий и этапов разработки конструкторской документации устанавливается техническим заданием на разработку.

Примечания: 1. Стадия «Техническое предложение» не распространяется на конструкторскую документацию изделий разрабатываемых по заказу Министерства обороны. 2. Необходимость разработки документации для изготовления и испытания макетов устанавливается разработчиком. 3. Конструкторская документация для изготовления макетов разрабатывается с целью: проверки принципов работы изделия или его составных частей на стадии эскизного проекта; проверки основных конструкторских решений разрабатываемого изделия или его составных частей на стадии технического проекта; предварительной проверки целесообразности изменения отдельных частей изготовляемого изделия до внесения эти изменений в рабочие конструкторские документы опытного образца (опытной партии). 4. Под разовым изготовлением понимается единовременное изготовление одного или более экземпляров изделия, дальнейшее производство которого не предусматривается.

2. Рабочим конструкторским документам изделия единичного производства, предназначенные для разового изготовления, присваивают литеру «И» при их разработке, которой может предшествовать выполнение отдельных стадий разработки (техническое предложение, эскизный проект технический проект) и соответственно этапов работ, указанных в таблице.

1, 2. (Измененная редакция, Изм. № 1).

3. (Исключен, Изм. № 1).

4. Техническое предложение - совокупность конструкторских документов, которые должны содержать технические и технико-экономические обоснования целесообразности разработки документации изделия на основании анализа технического задания заказчика и различных вариантов возможных решений изделий, сравнительной оценки решений с учетом конструктивных и эксплуатационных особенностей разрабатываемого и существующих изделий и патентные исследования.

Техническое предложение после согласования и утверждения в установленном порядке является основанием для разработки эскизного (технического) проекта. Объем работ - по ГОСТ 2.118-73.

5. Эскизный проект - совокупность конструкторских документов, которые должны содержать принципиальные конструктивные решения, дающие общее представление об устройстве и принципе работы изделия, а также данные, определяющие назначение, основные параметры и габаритны размеры разрабатываемого изделия.

Эскизный проект после согласования и утверждения в установленном порядке служит основанием для разработки технического проекта или рабочей конструкторской документации. Объем работ - по ГОСТ 2.119-73.

6. Технический проект - совокупность конструкторских документов, которые должны содержать окончательные технические решения, дающие полное представление об устройстве разрабатываемого изделия, и исходные данные для разработки рабочей документации.

Технический проект после согласования и утверждения в установленном порядке служит основанием для разработки рабочей конструкторской документации. Объем работ - по ГОСТ 2.120-73. 7. Ранее разработанные конструкторские документы применяют при разработке новых или модернизации изготовляемых изделий в следующих случаях:

а) в проектной документации (техническом предложении, эскизном и техническом проектах) и рабочей документации опытного образца (опытной партии) - независимо от литерности применяемых документов;

б) в конструкторской документации с литерами «О 1 « («О 2 «), «А» и «Б», если литерность применяемого документа та же или высшая.

Литерность полного комплекта конструкторской документации определяется низшей из литер, указанных в документах, входящих в комплект, кроме документов покупных изделий.

(Измененная редакция, Изм. № 1).

8. Конструкторские документы, держателями подлинников которых являются другие предприятия, могут применяться только при наличии учтенных копий или дубликатов.

Системный подход(вопр.10) - это направление исследования объекта с разных сторон, комплексно, в отличие от ранее применявшихся (физических, структурных и т.д.). При системном подходе в рамках моделирования систем необходимо прежде всего четко определить цель моделирования. Необходимо помнить, что невозможно полностью смоделировать реально функционирующую систему (систему-оригинал), а необходимо создать модель (систему-модель) под поставленную проблему при решении конкретной задачи. В конечном итоге моделирование должно адекватно отражать реальные процессы поведения исследуемых систем. Одной из целей моделирования является ее познавательная направленность. Выполнению этой цели способствует правильный отбор в создаваемую модель элементов системы, структуры и связей между ними, критерия оценки адекватности модели. При таком подходе упрощается классификация реальных систем и их моделей.

Таким образом, в целом системный подход предполагает следующие этапы решения проблемы:

    Изучение предметной области (качественный анализ).

    Выявление и формулирование проблемы.

    Математическая (количественная) постановка проблемы.

    Натурное и/или математическое моделирование исследуемых объектов и процессов.

    Статистическая обработка результатов моделирования.

    Поиск и оценка альтернативных решений.

    Формулирование выводов и предложений по решению проблемы.

Вопр.17 Требования к конструкциям ЭС и показатели их качества При решении задач конструирования заказных БИС и кристаллов СВЧ ИС решаются задачи операции входного контроля исходных данных, покрытия, компоновки, взаимного расположения компонентов при минимуме числа пересечений, трассировки, контроля топологии, изготовления рисунков фотошаблонов и их оригиналов. Главное, что надо отметить, это то, что радиоинженер-конструктор-технолог является пользователем средств вычислительной техники, а не их разработчиком и программистом, поэтому ему нужны основы этих знаний, чтобы грамотно решать свои задачи по автоматизированному конструированию. К основным требованиям, предъявляемым к конструкциям ЭС относятся высокое качество энергоинформационных (электрических) показателей, надежность, прочность, жесткость, технологичность, экономичность и серийноспособность конструкции при малой материалоемкости и потребляемой мощности. Конструкции, отвечающие этим требованиям, должны обладать минимальными массой m, объемом V, потребляемой мощностью Р, частотой отказов l, стоимостью С и сроком разработки Т, должны быть вибро- и ударопрочны, работать в нормальном тепловом режиме и иметь достаточно высокий для производства процент выхода годных изделий. Показатели, характеризующие эти качества, могут быть разбиты на следующие группы: абсолютные (в абсолютных единицах), комплексный (безразмерный, обобщенный), удельные (в удельных величинах) и относительные (безразмерные, нормированные). К абсолютным показателям относят массу конструкции, ее объем, потребляемую мощность, частоту отказов, стоимость и срок разработки. Иногда эту группу показателей называют материальными (М) показателями, отвечающими на вопрос, из чего и как сделано устройство. Группу же энергоинформационных параметров в этих случаях называют функциональными (Ф) показателями, которые отвечают на вопрос для чего и что может делать устройство. Из этих двух групп могут быть получены более общие показатели качества такие, как комплексный показатель и удельные показатели качества. Комплексный показатель качества представляет собой сумму нормированный частных материальных показателей со своими "весовыми" коэффициентами, как коэффициентами значимости этого параметра на суммарное качество конструкции: К=j m m o +j V V o +j l l o +j P P o +j C C o +j T T o , (1) где m o , V o , l o , P o , C o , T o – нормированные значения материальных параметров относительно заданных по техническому заданию либо отношения этих материальных параметров для разных сравнительных вариантов конструкции, j m , j V , j l , j P , j C , j T – коэффициенты значимости частных материальных параметров, определяемые методом экспертных оценок, обычно их значение выбирают в пределах от 0 до 1. Выражение (1) показывает, что чем меньше каждый из материальных параметров, тем выше качество конструкции при одних и тех же функциональных параметрах. Коэффициенты значимости определяются группой экспертов (желательно в количестве не менее 30 человек), которые в зависимости от назначения и объекта установки РЭС присваивают каждый то или иное значение коэффициента значимости параметрам. Далее их результаты оценки суммируются, определяются средние значения и среднеквадратичные этих коэффициентов, находятся допустимые поля отклонений и по ним устраняют "промахи" экспертов, которые исключают из общей суммы и далее повторяют те же операции обработки данных. В результате получают средние, "достоверные" значения этих коэффициентов, и тем самым и само уравнение для расчетов. К удельным показателям качества конструкции относят удельные коэффициенты конструкций: плотность упаковки элементов на площади или в объеме, удельную мощность рассеивания на площади или в объеме (теплонапряженность конструкции), удельную массу (плотность) конструкции, величину истечения газа из объема конструкции (степень герметичности), Удельные коэффициенты оценивают прогресс развития новых конструкций по сравнению с предыдущими аналогами и прототипами. Они выражаются как k=М/Ф и для каждого из типов радиоустройств или болков имеют конкретное выражение размерности величин. Так для антенных устройств, если для них в качестве основного параметра взять массу, удельный коэффициент k А =m/G [кг/ед.усиления], где G – коэффициент усиления антенны; для передающих устройств k пер =m/Р вых [кг/Вт], где Р вых – выходная мощность передатчика. Поскольку передающие устройства характеризуются большим количеством функциональных параметров (коэффициентом усиления, коэффициентом шума, полосой пропускания, выходной мощностью и др.), то функциональная сложность и качество выполняемых функций для микросборочных конструктивов может быть оценено количеством разработанных микросборок (n МСБ), тогда k пер =m/ n МСБ [кг/МСБ]. Аналогично можно рассчитать удельные коэффициенты и по отношению к другим материальным параметрам и получить для сравнения аналогов их величины, выраженные в [см 3 /ед.усиления], [см 3 /Вт], [см 3 /МСБ], [руб/ед.усиления],[руб/Вт], [руб/МСБ] и т.п. Такие оценки наиболее наглядны и не требуют доказательств, что лучше а что хуже без всяких эмоций. Плотность упаковки элементов на площади или в объеме оценивается следующими выражениями g S =N/S и g V =N/V, где N – количество элементов, S и V – занимаемые ими площадь или объем соответственно. Количество элементов определяется какN=N ИС *n э +n ЭРЭ, где N ИС – количество ИС в устройстве, n э – количество элементов в одной ИС (кристалле или в корпусе), n ЭРЭ – количество навесных электрорадиоэлементов в конструкции ячейки, блока, стойки. Плотность упаковки является главным показателем уровня интеграции конструктивов того или иного уровня. Так если для полупроводниковых ИС с объемом кристалла в 1 мм 3 и количеством элементов в нем равным 40 единиц, g ИС =40*10 3 эл/см 3 , то на уровне блока цифровых РЭС g б =40 эл/см 3 . Происходит это за счет того, что кристаллы корпусируются, далее корпусированные ИС рзмещаются на плате с известным зазором и при компоновке ФЯ в блок опять-таки появляются дополнительные зазоры между пакетом ФЯ и внутренними стенками корпуса. Да и сам корпус имеет объем (объем стенок и лицевой панели), в котором нет полезных (схемных) элементов. Иначе говоря, при переходе с одного уровня компоновки на другой происходит потеря (дезинтеграция) полезного объема. Как будет сказано ниже, коэффициент дезинтеграции определяется отношение суммарного объема к полезному объему. Для блока цифрового типа он выражается какq V =V б /N ИС *V ИС, где V ИС – объем одной микросхемы (либо бескорпусной, либо корпусированной в зависимости от метода конструирования). Учтя это выражение, можно записать, что g б = (N ИС *n э)/(q V * N ИС *V ИС) =g ИС / q V , (2) где g ИС =n э / V ИС – плотность упаковки элементов в ИС. Как показано выше, в бескорпусных ИС цифрового типа малой степени интеграции эта величина составляет 40 тыс.эл./см 3 . При установке бескорпусных ИС в корпус, например IV типа, происходит увеличение объема примерно в 200 раз, а при установке корпусированных ИС на плату и далее компоновке их в объеме корпуса еще в 5 раз, т.е. суммарный коэффициент дезинтеграции составляет уже 10 3 , при этом и получается g б =40 эл/см 3 , что характерно для блоков III поколения РЭС цифрового типа. Из выражения (2) следует, что конструирование цифровых устройств высокой интеграции требует от разработчика не только применения БИС и СБИС, но и достаточно компактной компоновки. Для конструкций аналоговых ЭС, где не наблюдается четко выраженных регулярных структур активных элементов, где их число становится соизмеримым или даже меньшим, чем число пассивных навесных ЭРЭ (обычно одну аналоговую ИС "обрамляют" до 10 пассивных элементов: конденсаторов вместе с катушками и фильтрами), коэффициенты дезинтеграции объема еще более возрастает (в 3…4 раза). Из этого следует, что сравнивать конструктивы разного уровня иерархии и различных по назначению и принципу действия нельзя, т.е. этот показатель качества для всех ЭС не является универсальным. К тому же добавим, что если в одной компактной конструкции применили ИС малой степени интеграции (до 100 элементов на корпус), а в другой – плохо скомпоноввнной, но на БИС, то может оказаться по этому показателю, что вторая конструкция лучше, хотя явно видно, что она хуже. Поэтому в случае применения элементной базы разной степени интеграции сравнение конструкций по плотности компоновки неправомерно. Таким образом, плотность упаковки элементов в объеме конструктива является действительной оценкой качества конструкции, но пользоваться этим критерием для сравнения надо грамотно и объективно. Удельная мощность рассеивания определяет тепловую напряженность в объеме конструктива и рассчитывается как Р уд.расс =Р расс /V, где Р расс @(0,8…0,9)Р для цифровых регулярных структур. В аналоговых, в особенности в приемоусилительных ячейках и блоках, мощности рассеивания и теплонапряженности невелики и тепловой режим обычно бывает нормальным и с большим запасом по этому параметру. В устройствах цифрового типа это, как правило, не наблюдается. Чем выше требования на быстродействие вычислительных средств, тем больше величина потребляемой мощности, тем выше теплонапряженность. Для РЭС на бескорпусных МСБ эта проблема еще более усугубляется, так как объем при переходе от III к IV поколению уменьшается, как было отмечено выше, в 5…6 раз. Поэтому в конструкциях блоков цифрового типа на бескорпусных МСБ обязательным является наличие мощных теплоотводов (металлических рамок, медных печатных шин и т.п.) В некоторых случаях в бортовых РЭС применяют и системы охлаждения, выбор типа которых проводится по критерию удельной мощности рассеивания с поверхности блока (Р¢ уд.расс =Р расс /S, Вт/см 2). Для блоков цифрового типа III поколения допускаемая тепловая напряженность составляет 20…30 Вт/дм 3 в условиях естественной конвекции и при перегреве корпуса относительно среды не более, чем 40 О С, а для блоков IV поколения порядка 40 Вт/дм 3 и более. Удельная масса конструкции выражается как m¢=m/V. Этот параметр ранее считался за главный критерий оценки качества аппаратуры и далее было условное деление конструкций на "тонущую РЭА" (m¢>1 г/см 3) и "плавающую РЭА" (m¢<1 г/см 3). Если конструкция была тонущая, то считали, что она компактна и хорошо скомпонована (мало воздуха и пустот в корпусе). Однако с появление IV поколения конструкций РЭС, где преобладающей долей массы являлись металлические рамки и с более толстыми стенками корпус (для обеспечения требуемой жесткости корпуса при накачке внутрь его азота), даже плохо скомпонованные ячейки оказывались тонущими. И чем больше и впустую расходовался металл, тем более возрастал этот показатель, переставший отражать качество компоновки и конструкции в целом. Поэтому для сравнения качества конструкций по этому критерию отказались, но он оказался полезным для решения другой задачи, а именно, распределение ресурса масс в конструктивах. Величина истечения газа из объема конструкции оценивает степень ее герметичности и определяется как D=V г *р/t , (3) где V г - объем газа в блоке, дм 3 ; р – величина перепада внутреннего и внешнего давления (избыточного давления) в блоке, Па (1 Па=7,5 мкм рт.ст.); t - срок службы или хранения, с. Для блоков с объемом V г =0,15…0,2 дм 3 в ответственных случаях при выдержке нормального давления к концу срока службы (8 лет) требуется D=6,65*10 -6 дм 3 *Па/с (или 5,5*10 -5 дм 3 *мкм рт.ст/с), в менее ответственных случаях полная вакуумная герметизация не обеспечивается и степень герметичности может быть уменьшена до значения 10 -3 дм 3 *мкм.рт.ст/с. В группе относительных показателей находятся коэффициенты дезинтеграции объема и массы, показатель функционального расчленения, величина перегрузки конструкции при вибрациях и ударах, а также многие параметры технологичности конструкции такие, как коэффициенты унификации и стандартизации, коэффициент повторяемости материалов и изделий электронной техники, коэффициент автоматизации и механизации и др. Последние достаточно хорошо известны из технологических дисциплин, поэтому повторять их содержание и влияние на качество конструкции не станем. Как уже отмечалось выше при рассмотрении плотности упаковки, в конструкциях РЭС разного уровня компоновки присутствуют потери полезного объема, а следовательно, и масс при корпусировании ИС, компоновке их в ячейки и далее в блоки, стойки. Уровень их может быть весьма значительным (в десятки и сотни раз). Оценки этих потерь (дезинтеграции) объемов и масс проводится с помощью коэффициентов дезинтеграции q V и q m соответственно, выражаемые как отношение суммарного объема (массы) конструктива к его полезному объему (массе), или q V =V/V N , q m =m/m N , (4) где V N =SV с.э., m N =Sm с.э. – полезный объем и масса схемных элементов. При переходе с одного уровня компоновки на более высший уровень коэффициенты дезинтеграции объема (или массы) q V(m) показывают, во сколько раз увеличиваются суммарные объем (или масса) комплектующих изделий к следующей конкретной форме их компоновки, например при переходе от нулевого уровня – корпусированных микросхем к первому – функциональной ячейке имеемq V(m) =V(m) ФЯ /SV(m) ИС, при переходе от уровня ячейки к блоку q V(m) = V(m) б /SV(m) ФЯ и т.д., где V(m) ИС, V(m) ФЯ, V(m) б – соответственно объемы (или массы) микросхемы, ячейки, блока. Как и в случае критерия плотности упаковки заметим, что коэффициенты дезинтеграции реально отражают качество конструкции, в частности ее компактность, но и они не могут быть использованы для сравнения конструктивов, если они относятся к разным поколениям, разным уровням конструктивной иерархии или ЭС различного назначения и принципа действия. Анализ существующих наиболее типовых и компактных конструктивов различных поколений и различного назначения позволил получить средние значения их коэффициентов дезинтеграции объема и массы (табл. 1). там же приведены значения удельной массы конструктивов. Показатель функционального разукрупнения конструкции представляет собой отношение количества элементов N в конструктиве к количеству выводов М из него, или ПФР=N/M. Например для цифровой бескорпусной МСБ, содержащей 12 бескорпусных ИС с 40 элементами в каждом кристалле (N=40*12=480 элементов) и 16 выходными площадками, имеем ПФР=480/16=30. Чем выше ПФР, тем ближе конструкция к конструктиву высокой интеграции, тем меньше монтажных соединений между ними, тем выше надежность и меньше масса и габариты. Наибольшее число функций и элементов монтажа "вбирают" в себя БИС¢ы и СБИС¢ы. Однако и у них есть предел степени интеграции, оговариваемый именно количеством допустимых выводов от активной площади кристалла к периферийным контактным площадкам. Наконец, величина перегрузки n действующих на конструкцию вибраций или ударов оценивается как отношение возникающего от их действия ускорения масс элементов конструкции к ускорению свободного падения, или n=a/g, где а – величина ускорения при вибрации (или ударе). Вибро- и ударопрочность конструкции определяются значениями величин допускаемых перегрузок при вибрациях и ударах, которые может выдержать конструкция без разрушения своих связей между элементами. Для того, чтобы эти свойства были обеспечены, необходимо, чтобы реально возникающие в тех или иных условиях эксплуатации перегрузки не превышали предельно допустимых для конкретной конструкции.

Вопр.26

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Пусть интересующее нас свойство (Y) объекта зависит от нескольких (n) независимых переменных (Х1, Х2, …, Хn) и мы хотим выяснить характер этой зависимости - Y=F(Х1, Х2, …, Хn), о которой мы имеем лишь общее представление. Величина Y – называется “отклик”, а сама зависимость Y=F(Х1,Х2, …, Хn) – “функция отклика”.

Отклик должен быть определен количественно. Однако могут встречаться и качественные признаки Y. В этом случае возможно применение рангового подхода. Пример рангового подхода - оценка на экзамене, когда одним числом оценивается сложный комплекс полученных сведений о знаниях студента.

Независимые переменные Х1, Х2, …, Хn – иначе факторы, также должны иметь количественную оценку. Если используются качественные факторы, то каждому их уровню должно быть присвоено какое-либо число. Важно выбирать в качестве факторов лишь независимые переменные, т.е. только те которые можно изменять, не затрагивая другие факторы. Факторы должны быть однозначными. Для построения эффективной математической модели целесообразно провести предварительный анализ значимости факторов (степени влияния на функцию), их ранжирование и исключить малозначащие факторы.

Диапазоны изменения факторов задают область определения Y. Если принять, что каждому фактору соответствует координатная ось, то полученное пространство называется факторным пространством. При n=2 область определения Y представляется собой прямоугольник, при n=3 – куб, при n >3 - гиперкуб.

При выборе диапазонов изменения факторов нужно учитывать их совместимость, т.е. контролировать, чтобы в этих диапазонах любые сочетания факторов были бы реализуемы в опытах и не приводили бы к абсурду. Для каждого из факторов указывают граничные значения

, i=1,... n.

Регрессионный анализ функции отклика предназначен для получения ее математической модели в виде уравнения регрессии

где В1, …, Вm – некоторые коэффициенты; е – погрешность.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

планирование при изучении динамических процессов и т.д.

Инициатором применения планирования эксперимента является Рональд А. Фишер, другой автор известных первых работ – Френк Йетс. Далее идеи планирования эксперимента формировались в трудах Дж. Бокса, Дж. Кифера. В нашей стране - в трудах Г.К. Круга, Е.В. Маркова и др.

В настоящее время методы планирования эксперимента заложены в специализированных пакетах, широко представленных на рынке программных продуктов, например: StatGrapfics, Statistica, SPSS, SYSTAT и др.

Вопр.18 Полный факторный эксперимент предполагает возможность управлять объектом по одному или нескольким независимым каналам (см. рис.1.5,в).

В общем случае, схема эксперимента может быть представлена в виде, представленном на рис.1.5, в. В схеме используются следующие группы параметров:

1. управляющие (входные )

2. параметры состояния (выходные )

3. возмущающие воздействия ()

При многофакторном и полном факторном эксперименте выходных параметров может быть несколько. Пример такого пассивного многофакторного эксперимента будет рассмотрен в шестой главе настоящей книги.

Управляющие параметры представляют собой независимые переменные, которые можно изменять для управления выходными параметрами. Управляющие параметры называют факторами . Если (один управляющий параметр), то эксперимент однофакторный. Многофакторный эксперимент соответствует конечному числу управляющих параметров. Полный факторный эксперимент соответствует наличию возмущающих воздействий в многофакторном эксперименте.

Диапазон изменения факторов или число значений, которое они могут принимать называется уровнем фактора .

Полный факторный эксперимент характеризуется тем, что при фиксированных возмущающих воздействиях минимальное число уровней каждого фактора равно двум. В этом случае, зафиксировав все факторы кроме одного, необходимо провести два измерения, соответствующих двум уровням этого фактора. Последовательно осуществляя такую процедуру для каждого из факторов , получим необходимое число опытов в полном факторном эксперименте для реализации всех возможных сочетаний уровней факторов , где - число факторов.

Планирование эксперимента (англ. experimental design techniques) -- комплекс мероприятий, направленных на эффективную постановку опытов. Основная цель планирования эксперимента -- достижение максимальной точности измерений при минимальном количестве проведенных опытов и сохранении статистической достоверности результатов.Планирование эксперимента применяется при поиске оптимальных условий, построении интерполяционных формул, выборе значимых факторов, оценке и уточнении констант теоретических моделей и др.

Планирование эксперимента возникло в 50-х годах XX века из потребности устранить или хотя бы уменьшить систематические ошибки в сельскохозяйственных исследованиях путем рандомизации условий проведения эксперимента. Процедура планирования оказалась направленной не только на уменьшение дисперсии оцениваемых параметров, но также и на рандомизацию относительно сопутствующих, спонтанно изменяющихся и неконтролируемых переменных. В результате удалось избавиться от смещения в оценках. Исследования Р. Фишера знаменуют начало первого этапа развития методов планирования эксперимента. Фишер разработал метод факторного планирования. Йетс предложил для этого метода простую вычислительную схему. Факторное планирование получило широкое распространение. Особенностью факторного эксперимента является необходимость ставить сразу большое число опытов. Развитие теории планирование эксперимента в СССР отражено в работах В. В. Налимова, Ю. П. Адлера, Ю. В. Грановского, Е. В. Марковой, В. Б. Тихомирова.

Методы планирования эксперимента позволяют минимизировать число необходимых испытаний, установить рациональный порядок и условия проведения исследований в зависимости от их вида и требуемой точности результатов. Если же по каким-либо причинам число испытаний уже ограничено, то методы дают оценку точности, с которой в этом случае будут получены результаты. Методы учитывают случайный характер рассеяния свойств испытываемых объектов и характеристик используемого оборудования. Они базируются на методах теории вероятности и математической статистики.

Планирование эксперимента включает ряд этапов.

  • 1. Установление цели эксперимента (определение характеристик, свойств и т. п.) и его вида (определительные, контрольные, сравнительные, исследовательские).
  • 2. Уточнение условий проведения эксперимента (имеющееся или доступное оборудование, сроки работ, финансовые ресурсы, численность и кадровый состав работников и т. п.). Выбор вида испытаний (нормальные, ускоренные, сокращенные в условиях лаборатории, на стенде, полигонные, натурные или эксплуатационные).
  • 3. Выявление и выбор входных и выходных параметров на основе сбора и анализа предварительной (априорной) информации. Входные параметры (факторы) могут быть детерминированными, то есть регистрируемыми и управляемыми (зависимыми от наблюдателя), и случайными, то есть регистрируемыми, но неуправляемыми. Наряду с ними на состояние исследуемого объекта могут оказывать влияние нерегистрируемые и неуправляемые параметры, которые вносят систематическую или случайную погрешность в результаты измерений. Это -- ошибки измерительного оборудования, изменение свойств исследуемого объекта в период эксперимента, например, из-за старения материала или его износа, воздействие персонала и т. д.
  • 4. Установление потребной точности результатов измерений (выходных параметров), области возможного изменения входных параметров, уточнение видов воздействий. Выбирается вид образцов или исследуемых объектов, учитывая степень их соответствия реальному изделию по состоянию, устройству, форме, размерам и другим характеристикам.

На назначение степени точности влияют условия изготовления и эксплуатации объекта, при создании которого будут использоваться эти экспериментальные данные. Условия изготовления, то есть возможности производства, ограничивают наивысшую реально достижимую точность. Условия эксплуатации, то есть условия обеспечения нормальной работы объекта, определяют минимальные требования к точности.

Точность экспериментальных данных также существенно зависит от объёма (числа) испытаний -- чем испытаний больше, тем (при тех же условиях) выше достоверность результатов. Для ряда случаев (при небольшом числе факторов и известном законе их распределения) можно заранее рассчитать минимально необходимое число испытаний, проведение которых позволит получить результаты с требуемой точностью.

5. Составление плана и проведение эксперимента -- количество и порядок испытаний, способ сбора, хранения и документирования данных.

Порядок проведения испытаний важен, если входные параметры (факторы) при исследовании одного и того же объекта в течение одного опыта принимают разные значения. Например, при испытании на усталость при ступенчатом изменении уровня нагрузки предел выносливости зависит от последовательности нагружения, так как по-разному идет накопление повреждений, и, следовательно, будет разная величина предела выносливости.

В ряде случаев, когда систематически действующие параметры сложно учесть и проконтролировать, их преобразуют в случайные, специально предусматривая случайный порядок проведения испытаний (рандомизация эксперимента). Это позволяет применять к анализу результатов методы математической теории статистики.

Порядок испытаний также важен в процессе поисковых исследований: в зависимости от выбранной последовательности действий при экспериментальном поиске оптимального соотношения параметров объекта или какого-то процесса может потребоваться больше или меньше опытов. Эти экспериментальные задачи подобны математическим задачам численного поиска оптимальных решений. Наиболее хорошо разработаны методы одномерного поиска (однофакторные однокритериальные задачи), такие как метод Фибоначчи, метод золотого сечения.

6. Статистическая обработка результатов эксперимента, построение математической модели поведения исследуемых характеристик.

Необходимость обработки вызвана тем, что выборочный анализ отдельных данных, вне связи с остальными результатами, или же некорректная их обработка могут не только снизить ценность практических рекомендаций, но и привести к ошибочным выводам. Обработка результатов включает:

  • · определение доверительного интервала среднего значения и дисперсии (или среднего квадратичного отклонения) величин выходных параметров (экспериментальных данных) для заданной статистической надежности;
  • · проверка на отсутствие ошибочных значений (выбросов), с целью исключения сомнительных результатов из дальнейшего анализа. Проводится на соответствие одному из специальных критериев, выбор которого зависит от закона распределения случайной величины и вида выброса;
  • · проверка соответствия опытных данных ранее априорно введенному закону распределения. В зависимости от этого подтверждаются выбранный план эксперимента и методы обработки результатов, уточняется выбор математической модели.

Построение математической модели выполняется в случаях, когда должны быть получены количественные характеристики взаимосвязанных входных и выходных исследуемых параметров. Это -- задачи аппроксимации, то есть выбора математической зависимости, наилучшим образом соответствующей экспериментальным данным. Для этих целей применяют регрессионные модели, которые основаны на разложении искомой функции в ряд с удержанием одного (линейная зависимость, линия регрессии) или нескольких (нелинейные зависимости) членов разложения (ряды Фурье, Тейлора). Одним из методов подбора линии регрессии является широко распространенный метод наименьших квадратов. Для оценки степени взаимосвязанности факторов или выходных параметров проводят корреляционный анализ результатов испытаний. В качестве меры взаимосвязанности используют коэффициент корреляции: для независимых или нелинейно зависимых случайных величин он равен или близок к нулю, а его близость к единице свидетельствует о полной взаимосвязанности величин и наличии между ними линейной зависимости.

При обработке или использовании экспериментальных данных, представленных в табличном виде, возникает потребность получения промежуточных значений. Для этого применяют методы линейной и нелинейной (полиноминальной) интерполяции (определение промежуточных значений) и экстраполяции (определение значений, лежащих вне интервала изменения данных).

7. Объяснение полученных результатов и формулирование рекомендаций по их использованию, уточнению методики проведения эксперимента.

Снижение трудоемкости и сокращение сроков испытаний достигается применением автоматизированных экспериментальных комплексов. Такой комплекс включает испытательные стенды с автоматизированной установкой режимов (позволяет имитировать реальные режимы работы), автоматически обрабатывает результаты, ведет статистический анализ и документирует исследования. Но велика и ответственность инженера в этих исследованиях: четкое поставленные цели испытаний и правильно принятое решение позволяют точно найти слабое место изделия, сократить затраты на доводку и итерационность процесса проектирования.

Прежде чем перейти к описанию конкретных используемых в психологии планов, перечислим принципы, на которые опирается построение экспериментальных схем.

  • 1. Эксперимент возможен только в том случае, если имеется более чем одно условие НП. Вывод о результате действия НП основывается на сравнении показателей ЗП в отличающихся друг от друга условиях («контрольном» и «экспериментальном», «активном» и «пассивном» или в нескольких отличающихся по заданному критерию условиях).
  • 2. Фиксация и измерение переменных осуществляются в классификации шкал, предложенной Стивенсом: наименований, порядка, интервалов и отношений. Вид переменной (учебные классы, градации яркости светового пятна и т.д.) не задает, однако, способа ее измерения (на качественных или количественных уровнях). Обычно «количественным» экспериментом называют такой, где именно НП измерена количественно.
  • 3. Эксперимент возможен только в случае функционального контроля уровней НП. Это может быть изменение характеристик физических стимулов, управление условиями (и ситуациями) или контроль путем подбора состава групп. В эксперименте обычно используются стратегии уравнивания групп, и испытуемые эквивалентных групп попадают в разные экспериментальные условия. Обеспечение неравенства групп как способа задания НП (пол, возраст, личностные свойства и т.п.) принимает форму квазиэксперимента, или эксперимента с ограничениями форм контроля. Если изменения НП не зависят от исследователя, а берутся «готовыми» (например, как результаты психодиагностики), то у исследователя не может быть уверенности в том, что именно выбранная НП определила показатели ЗП.
  • 4. Факторные (мультивариативные) эксперименты, включающие управление более чем одной НП, строятся как комбинации, повторы (репликации) и другие видоизменения исходных планов с одной НП. Статистические приемы обработки данных могут при этом как предполагать, так и исключать взаимодействия между отдельными переменными.
  • 5. Вводимое экспериментальное воздействие выступает в планах, или схемах, в качестве НП даже в том случае, когда испытуемые не воспринимают разницы условий. Часто только после эксперимента делается вывод, можно ли осуществленную манипуляцию условиями рассматривать как «воздействие» или функциональный контроль НП не имеет результатом действие этой переменной.
Понравилась статья? Поделиться с друзьями: